
Nighttime Lane Detection and Vehicle Position Determination based
on OpenCV

Leilei Chen*, Yingshun Liu, Weiye Zhang
Nanjing University of Science and Technology, No.200 Xiaoling Wei Street, Nanjing City, 210094,

Jiangsu Province, China
*corresponding author email: 122110223429@njust.edu.cn

ABSTRACT

Lane detection plays a significant role in computer vision and autonomous driving applications. However, it encounters
challenges under low-light conditions during nighttime, where images are darker and real-time processing is necessary.
In this study, a nighttime lane detection method based on OpenCV is proposed. Initially, image contrast stretching is
applied to enhance brightness as a preprocessing step. By adjusting the grayscale range of the image, lane line features
can be captured more effectively. Median filtering and bilateral filtering are then employed to reduce noise interference
in the image. To address potential left-right deviation caused by the camera, a novel dynamic Region of Interest (ROI)
method is introduced. This method adaptively adjusts the ROI based on real-time image analysis, thereby reducing false
detections and improving overall detection performance. Canny edge detection and Hough transform are utilized to
locate the lane lines. Finally, lane fitting and drawing techniques are applied to determine the vehicle's position within
the lane. Experimental results demonstrate the high accuracy and robustness of the proposed nighttime lane detection
method, which incorporates enhanced images and the dynamic ROI approach. The method accurately identifies the
vehicle's lane position, providing essential visual guidance for autonomous driving systems.

Keywords: lane detection, dynamic ROI, Canny edge detection, Hough transformation, autonomous driving

1. INTRODUCTION
The rapid development of autonomous driving technology is transforming our transportation methods and travel
experiences. As a crucial component of autonomous driving systems, lane detection plays an indispensable role in the
fields of computer vision and intelligent transportation. Lane detection assists autonomous driving systems in ensuring
that vehicles stay on the correct driving lanes. By promptly detecting any deviation from the lane lines, the autonomous
driving system can take appropriate measures to correct the deviation and avoid potential traffic accidents.

However, lane detection faces numerous challenges during nighttime driving due to limited lighting conditions. Garg et
al.[1] proposed an image processing method called gamma correction to address the issue of dark lane lines caused by low
brightness at night. Gamma correction enhances contrast and amplifies the image, allowing for better lane recognition in
low-light conditions. Liu et al.[2] tackled the problem of low-quality images by employing histogram equalization as a
preprocessing technique. Histogram equalization significantly improves image quality, accuracy, and robustness. Sharma
et al.[3] started with camera calibration using chessboard images to correct distortion from the input initial image. They
also utilized a bird's-eye view transformation to reduce information loss caused by camera issues, thereby enhancing the
acquired information content. Wang et al.[4] proposed a lane detection algorithm that combines lane pixel gradient and
color filtering in an interest model to meet the real-time requirements of lane detection. The effectiveness of this
algorithm was verified through experiments. These research efforts demonstrate various approaches to enhance lane
detection under challenging nighttime conditions, including gamma correction, histogram equalization, camera
calibration, bird's-eye view transformation, and interest model-based lane detection algorithms. Liu et al.[5] proposed a
method that utilizes the least squares adjustment technique after Hough transform to refine lane lines. This method
improves computational speed without sacrificing algorithm accuracy, making it practical for real-time applications.
Stević et al.[6] introduced an algorithm that detects lane edges using color thresholding and combines perspective
transformation with Hough transform to address the issue of blurry lane lines. The algorithm achieves satisfactory
detection results. Xing et al.[7] proposed a method that combines Hough transform with Shi-Tomasi corner detection to
enhance lane detection accuracy significantly. Li et al.[8] improved upon the basic Hough transform by employing the
Progressive Probabilistic Hough Transform (PPHT) for lane line identification. Simulation results demonstrated the
effectiveness of this method in lane detection.

International Conference on Smart Transportation and City Engineering (STCE 2023),
edited by Miroslava Mikusova, Proc. of SPIE Vol. 13018, 1301812

© 2024 SPIE · 0277-786X · doi: 10.1117/12.3024000

Proc. of SPIE Vol. 13018 1301812-1

This study proposes a nighttime lane detection method based on OpenCV to address various issues related to nighttime
lane detection. The method incorporates key techniques such as image contrast stretching, filtering processing, and
dynamic ROI searching to improve the accuracy and robustness of nighttime lane detection. The specific procedure is
illustrated in Figure 1.

Figure 1. The specific process of detecting and determining the position of vehicles at night lane lines

2. IMAGE PREPROCESSING
2.1 Image contrast stretching

Before performing contrast stretching, the original image, which is a three-channel RGB color image, needs to be split
into three separate channels. Next, contrast stretching is applied to each channel individually. Finally, the contrast-
stretched channels are merged back together to obtain the final contrast-stretched color image. This ensures that
appropriate contrast stretching is applied to each color channel, enhancing the visual effect and detail representation of
the entire color image. Through contrast stretching, smaller pixel values and larger pixel values are both mapped,
expanding the dynamic range of pixel values and enhancing the image's contrast. The specific code implementation steps
are as follows. The processed result is shown in Figure 2.

1. Channel Separation: Separate the RGB channels using the cv::split function.

2. Find the Minimum and Maximum Pixel Values: Traverse the entire image using cv::minMaxLoc() to find the
minimum pixel value (minVal) and maximum pixel value (maxVal) in the image.

3. Determine Thresholds: Determine the minimum brightness value (contrastMin) and maximum brightness value
(contrastMax) for stretching.

4. Linear Mapping of Pixel Values: Use the cv::convertTo() function to scale each pixel value in the image. The key is to
set the parameters alpha and beta in the function to achieve contrast stretching. The parameter alpha controls the scaling
factor, while the parameter beta adjusts the offset. Specifically:

max min
contrastMax contrastMinalpha

Val Val
,

<
,

(1)

∋ (min
max min

Val contrastMax contrastMin
beta contrastMin

Val Val
≥ ,

< ∗
,

(2)

5. Channel Merging: After performing contrast stretching on each channel, use the cv::merge() function to merge the
separated RGB channels back together, resulting in the final enhanced color image.

2.2 Image grayscale

Image grayscale conversion is the process of converting a color image to a grayscale image, where each pixel's color
information is transformed into a corresponding brightness value. This significantly reduces the data size and memory
usage of the image, improving computational efficiency. Grayscale conversion lowers the complexity of the image by
removing color information, making it more concise and easier to process. Moreover, when dealing with nighttime
images, converting them to grayscale can reduce the interference caused by factors such as color and lighting, thus
improving the robustness and effectiveness of algorithms. The specific code implementation involves using the
cv::cvtColor() function in OpenCV to convert the contrast-stretched image to a single-channel grayscale image.

Proc. of SPIE Vol. 13018 1301812-2

 0.299 0.587 0.114Gray R G B< ≥ ∗ ≥ ∗ ≥ (3)

Figure 2. The upper left corner is the original image, the upper right corner is the image after contrast stretching, the lower left corner
is the image after grayscale processing, and the lower right corner is the image after median filtering and bilateral filtering

2.3 Median filtering and Bilateral filtering

The purpose of filtering an image is to change or enhance specific attributes of the image or reduce noise present in the
image. Filtering operations can be achieved by applying various filters. In this study, a combined approach of median
filtering and bilateral filtering is utilized, which offers the following advantages:

1. Comprehensive denoising effect: Median filtering and bilateral filtering are suitable for different types of noise.
Median filtering effectively removes salt-and-pepper noise, while bilateral filtering smooths the image while preserving
edge information. By combining both methods, the influence of different types of noise can be comprehensively
considered, resulting in a more comprehensive denoising effect.

2. Edge preservation: Bilateral filtering is capable of preserving the sharpness of edges while smoothing the image, thus
avoiding edge blurring. By first applying median filtering to remove noise and then performing bilateral filtering, the
protective ability of edge preservation can be further enhanced, ensuring accurate retention of the edge information in the
image.

3. Adaptive adjustment: Bilateral filtering has the ability to adaptively adjust the filter based on the similarity between
pixels through weighted calculations. This allows for flexible processing of details in different regions, resulting in a
more natural overall filtering effect that adapts to the characteristics of the image.

4. Consideration of image details: Median filtering can preserve image details while removing noise, and bilateral
filtering can smooth the image while maintaining clarity of details. By combining these two filters, a better balance can
be achieved between denoising and detail preservation, resulting in an image with good visual quality and minimal noise
interference.

The principle of bilateral filtering is that it considers both the spatial and value domains. It achieves effective noise
reduction while preserving edges well. This is due to the fact that the filter kernel consists of two functions: a spatial
domain kernel and a value domain kernel.

The principle of median filtering is shown in Figure 3.

Proc. of SPIE Vol. 13018 1301812-3

Figure 3. Median filtering involves sorting the pixel values within a local neighborhood and replacing the original pixel value with the
median value, which is the middle value in the sorted sequence of pixel values

3. ESTABLISHMENT OF DYNAMIC ROI
The camera used in this study is installed at the exact center position on the top of the vehicle. However, due to certain
uncertainties such as left-right camera misalignment, the position of the ROI in the input image may be uncertain.
Considering this issue, this study proposes a dynamic ROI selection strategy. Compared to static ROI, dynamic ROI
offers the following advantages.

1. Adaptability: Static ROI is predefined and fixed, while dynamic ROI can adaptively adjust based on the actual
circumstances. Dynamic ROI can determine the region of interest by considering dynamic changes in the target's
position, scale, shape, etc., enabling more effective capturing and tracking of the target.

2. Flexibility: Dynamic ROI can be flexibly applied in different scenarios and tasks. For targets with diverse shapes,
dynamic ROI can be adjusted on-the-fly to accommodate different target characteristics as needed.

3. Error Reduction: Static ROI may introduce errors due to target movement or changes. Dynamic ROI, on the other
hand, can adjust based on the dynamic changes of the target, thereby improving the accuracy of detection and tracking.

3.1 Establish initial ROI

In this study, an initial ROI region is established based on the placement position of the camera. Considering the actual
situation, it is determined that a significant portion of the original image consists of irrelevant and interfering areas, while
the key region for lane detection is primarily concentrated at the bottom of the image. Therefore, an initial rectangular
ROI is set up, occupying the lower half of the image. The specific implementation process of the code is as follows.

1. Firstly, create a mask with the same size as the original image. The mask is a single-channel image with an initial
value of all zeros, representing black pixels.

2. Next, define the ROI range, which is a rectangular region. Its length is the same as the original image's length, and the
width is half of the original image's width.

3. Then, using the cv::rectangle() function provided by OpenCV, draw the ROI rectangle on the mask. This will set the
corresponding pixel positions on the mask to non-zero values.

4.Finally, apply the mask to the original image by performing a bitwise AND operation using the cv::bitwise_and()
function. This means that only when both corresponding pixels in the two images have non-zero values, the resulting
image will retain the corresponding pixels, forming the ROI, as shown in the Figure 4.

3.2 Canny edge detection and Hough transform

The Canny edge detection algorithm is a classic method used to detect prominent edges in an image. The main steps of
the Canny algorithm include the following.

1. Gaussian filtering: Firstly, the input image is subjected to Gaussian filtering to smooth the image and reduce the
impact of noise. Gaussian filtering applies a convolution operation using a Gaussian kernel to blur the image.The
formula for the Gaussian function is ∋ (,G x y , where ρ is the standard deviation.

Proc. of SPIE Vol. 13018 1301812-4

∋ (
2 2

2 2

1, exp
2 2

x yG x y
ορ ρ

∑ ⌡∗
< ,

(4)

2. Computing gradient and direction: Next, the Sobel operator is used to calculate the gradient magnitude and direction
for each pixel in the image. The formulas to compute the gradient magnitude G and gradient direction π are as
follows.

1 0 1 1 2 1
2 0 2 0 0 0
1 0 1 1 2 1

x yG A G A
,

 < , ≥ < ≥
 , , , ,

(5)

2 2 1tan y
x y

x

G
G G G

G
π , ∑ ⌡

< ∗ <

(6)

3. Non-maximum suppression: In this step, non-maximum suppression is applied to the gradient magnitude values in
order to preserve only the local maximum values within the edges and suppress other non-edge regions.

∋ (' (,) (,) (,) (,)
,

0
L x yM x y if M x y M and M x y M x y

M x y
otherwise

χ χ″ ″ ∗ ∗
<

(7)

In this context, LM refers to the low threshold for gradient intensity, while xχ and yχ represent the offset values
for gradient direction. After the aforementioned processing, for a set of edge points in the same direction, only one is
typically retained, achieving the purpose of edge thinning or skeletonization.

4. Dual thresholding: The suppressed gradient magnitude image is subjected to thresholding, where two thresholds (high
threshold and low threshold) are set to classify pixels into strong edges, weak edges, and non-edge pixels. Typically, the
high threshold is used to determine strong edges, while the low threshold is used to identify weak edges. The formula for
dual thresholding is as follows:

∋ (

'

' '

(,)
, (,) (,)

H

H L

Strong if M x y M
Canny x y Weak if M x y M andM x y M

Non edge otherwise

″
< ; ″
 ,

(8)

5. Edge detection: In this step, the strong edge pixels are connected with adjacent weak edge pixels that have a certain
connection relationship, forming complete edges. This process is known as edge tracing or edge linking.

In this study, the Canny algorithm is utilized to perform edge detection on the ROI region in the image. The resulting
image after detection is shown in the Figure 4.

Figure 4. The left image displays the initial ROI overlaid on the original image, while the right image shows the result of applying
Canny edge detection algorithm within the initial ROI

Proc. of SPIE Vol. 13018 1301812-5

Hough Transform is a classic image processing technique used to detect geometric shapes (such as lines, circles, etc.) in
an image. It achieves this by mapping the points in the image to a parameter space, which transforms the geometric
shapes in the original image into curves in the parameter space. In the parameter space, the geometric shapes in the
original image can be determined by finding intersections of the curves. The line Hough Transform utilizes the polar
coordinate representation.

cos sinx yθ π π< ∗ (9)

In the Hough Transform, a two-dimensional parameter space is used, where the X-axis represents the range of values for
parameter and the Y-axis represents the range of values for parameter. For each edge point in the input image, the
corresponding curve equation in the parameter space is used to perform accumulation. Ultimately, the points in the
parameter space with the highest accumulation values are selected, which correspond to lines in the original image. The
principle is shown in Figure 5.

Figure 5. In the image (A), there exists a point that can represent multiple lines, where each line can be described by the parameterized
equation (B) with variables θ and π When these lines are combined together in the parameter space ∋ (,θ π , they form the shape

of a specific curve (C).

3.3 Line filtering

After Canny edge detection, Hough Transform, and line fitting, this study performed filtering on the obtained lines to
remove redundant lines and retain only the ones that best represent the lane lines. The specific steps of the filtering
process are as follows: First, all fitted lines are traversed. Then, by calculating the angles between the lines, the lines that
meet the following conditions are selected: the two lines are not parallel, and their angle is less than 15°. In such cases,
only one of the lines is chosen to be retained, ensuring that the final set of retained lines accurately represents the
position and direction of the lane lines. Please refer to the Figure 6. for illustration.

3.4 Calculate Intersection Points

After the line filtering process, the obtained set of lines can roughly represent the position of the lane lines. Building
upon this, the next step involves finding the intersections of these lines to determine their coordinates, which will be used
for subsequent processing. By obtaining this set of intersection coordinates, further data processing and analysis can be
performed to extract more accurate lane information. Please refer to the accompanying Figure 6. for illustration.

Figure 6. Draw the filtered directly on the original image and mark the intersection points

Proc. of SPIE Vol. 13018 1301812-6

3.5 Dynamic ROI

Based on the obtained intersection coordinates from the previous step, locate the intersection point with the maximum
y value 0 0(,)P x y and record the values of 0x and 0y . Using this point, establish a new rectangular ROI as shown

in the accompanying Figure 7. Since the position of the lane lines varies in each image, the intersection coordinates also
change accordingly. Therefore, this new ROI is dynamically adjusted based on the changing position of the lane lines in
the image. It is referred to as a dynamic ROI. The dynamic ROI effectively filters out irrelevant information from the
upper part of the image, allowing the focus to be concentrated on the road surface and lane area for more accurate lane
detection and analysis.

Figure 7. The left image shows the search process for dynamic ROI, while the right image shows the results

4. DETERMINE THE LOCATION AND DRAW THE LANE LINE
4.1 Location determination

Based on the obtained intersection points, select all the x of the pixel coordinates and calculate their average. This step
aims to obtain the approximate average X-coordinate, denoted as xε , for all the intersection points. Then, compare xε

with the pixel length of the image, denoted as
2

col
. By comparing these values, the half-region in the image where the

vehicle is located can be determined. This comparison result provides an estimate of the vehicle's position within the lane,
which helps further analyze the extent of the vehicle's deviation from the lane lines. The specific judgment ideas are as
follows.

1. First, divide the length of the image into 20 equal parts to obtain a pixel length of
20
col

 for each part. This step is

carried out to determine a threshold that facilitates the determination of the vehicle's position.

2. Next, determine the position P of the vehicle in the lane using the following formula:

9

9 11

9

colleft x

col colP middle x

colright x

ε

ε

ε

 ;

< ′ ′

 ;

(11)

4.2 Draw the lane line

Based on the dynamic ROI, perform Canny edge detection and Hough transform again. Then, conduct line fitting and
filtering to obtain the final set of lane lines. Finally, draw the lane lines on the original image and mark the vehicle's
position in the lane based on the determination result. The final processing result is shown in Figure 8.

Proc. of SPIE Vol. 13018 1301812-7

Figure 8. The left image shows the results of Canny edge detection on dynamic ROI, while the right image shows the final output
result

5. CONCLUSION
This research focuses on nighttime environments and explores road lane detection in particular. Lane line information
extracted from a monocular camera is used as the data source. With the help of C++ programming environment and the
OpenCV platform, nighttime lane detection is implemented, enabling the determination of the vehicle's position in the
lane.

Given the low brightness characteristic of nighttime images, contrast stretching technique is employed to enhance the
image brightness. Additionally, to address the challenges of complex backgrounds and high interference in lane detection,
a dynamic ROI method is introduced. Initially, an initial ROI is established, and then a series of image transformations
are applied to obtain the fitted intersection points of the lines. The dynamic ROI is adaptively updated based on these
intersection points. The dynamic ROI allows for flexible adjustment based on the variation between the target and the
background, enabling better differentiation and improving detection and recognition performance. Subsequently,
techniques such as Canny edge detection, Hough transform, and line fitting are utilized to identify the lane lines. Finally,
by comparing the found intersection points with the image, the position of the vehicle within the lane lines can be
accurately determined.

Experimental validation has confirmed that this method achieves high detection accuracy, accurately detecting and
drawing lane lines, as well as precisely determining the vehicle's position in the lane. Moreover, this method possesses
practicality and can be applied to safety-assist driving systems and autonomous driving systems. Future research
directions include vehicle deviation warning and pedestrian detection, which will effectively enhance the safety
performance of autonomous driving.

REFERENCES

[1] M. Garg, A. Sehrawat and P. Savaridassan., "Vehicle Lane Detection for Accident Prevention and Smart
Autodrive Using OpenCV," 2023 International Conference on Computer Communication and Informatics
(ICCCI), Coimbatore, India, 2023, pp. 1-5, doi: 10.1109/ICCCI56745.2023.10128394.

[2] Y. Liu, R. Nan and W. Feng, "Lane line detection based on OpenCV," 2022 7th International Conference on
Intelligent Informatics and Biomedical Science (ICIIBMS), Nara, Japan, 2022, pp. 301-304, doi:
10.1109/ICIIBMS55689.2022.9971627.

[3] Sharma, A., Vir, T., Ohri, S., Chowdhary, S.K. (2023). Road Lane Line and Object Detection Using Computer
Vision. In: Shukla, A., Murthy, B.K., Hasteer, N., Van Belle, JP. (eds) Computational Intelligence. Lecture
Notes in Electrical Engineering, vol 968. Springer, Singapore. https://doi.org/10.1007/978-981-19-7346-8_60

[4] Z. Wang, Y. Fan and H. Zhang, "Lane-line Detection Algorithm for Complex Road Based on OpenCV," 2019
IEEE 3rd Advanced Information Management, Communicates, Electronic and Automation Control Conference
(IMCEC), Chongqing, China, 2019, pp. 1404-1407, doi: 10.1109/IMCEC46724.2019.8983919.

[5] W. Liu, C. Lu and N. Zhang, "Lane Line Detection Technology Based on OpenCV for Specific Scenarios,"
2022 6th CAA International Conference on Vehicular Control and Intelligence (CVCI), Nanjing, China, 2022,
pp. 1-4, doi: 10.1109/CVCI56766.2022.9964526.

Proc. of SPIE Vol. 13018 1301812-8

[6] S. Stević, M. Dragojević, M. Krunić and N. Četić, "Vision-Based Extrapolation of Road Lane Lines in
Controlled Conditions," 2020 Zooming Innovation in Consumer Technologies Conference (ZINC), Novi Sad,
Serbia, 2020, pp. 174-177, doi: 10.1109/ZINC50678.2020.9161779.

[7] Xing, X., Yao, Y., & Li, J. (2022). Design and Implementation of Lane Detection Algorithm Based on OpenCV.
Computer Knowledge and Technology, 18(24), 91-92+98. DOI: 10.14004/j.cnki.ckt.2022.1435.

[8] Li, J., & Zhong, P. (2021). Lane Detection Method Based on OpenCV. Journal of Huaqiao University (Natural
Science), 42(04), 421-424.

Proc. of SPIE Vol. 13018 1301812-9

