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ABSTRACT

In order to improve the elasticity of urban rail transit (URT) network, considering action and recovery process of
disruption events, a risk assessment method for URT network based on robustness, vulnerability and elasticity is
proposed. By quantifying the overall impact of disturbance on the performance of the URT network, a recovery model is
established to maximize the elasticity index of the URT network and an adaptive genetic algorithm is used to solve it.
Taking Xi'an URT network as an example, two disturbance scenarios are examined: a random attack and a deliberate
attack. The recovery effect of the target recovery strategy, the random recovery strategy and the preferred recovery
strategy on the elasticity of the URT network after the disturbance occurs is comparatively analyzed. The results show
that the recovery effect of the targeted recovery strategy on the elasticity of the URT network is the best, followed by the
preferred recovery strategy. The conclusions of this paper can provide strategic support for the recovery of the URT
network after disturbance.
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1. INTRODUCTION

Urban rail transit (URT) is the current infrastructure construction that can meet several social development goals. It
centralizes scattered travel modes, can increase urban transportation volume and speed and effectively reduce the
frequency of car use. Good rail transit network can also reduce multiple pressures in urban centers!!. The urban rail
transit system includes subways, light rails, monorails, trams, maglev trains and other modes. The rail transit system is
one of the most important functional modules of the city and its network elasticity recovery after disruption is an
important guarantee for promoting the safe development of the city?!. Therefore, improving the network elasticity of
URT has become an urgent problem to be solved. The data shows that the operating mileage of URT in China will reach
8708 kilometers by the end of 202181, The interconnected operation of URT in China not only facilitates the travel of
passengers, but also increases the difficulty of operation and various operational disturbance occur from time to time.

Disruptions are natural or man-made disasters that affect the network and eventually lead to station/line function loss,
network congestion and other problems. Disruptions in the URT network not only place a huge burden on the urban
transportation system, but also have a serious impact on people's lives.On July 20, 2021, a continuous torrential rain in
extremely heavy rainstorm caused serious ponding in the Wulongkou parking lot and surrounding areas of Metro Line 5
in Zhengzhou. A train on Line 1 was inundated by floods, resulting in the tragic death of 12 passengers. In March 2021, a
sudden equipment failure at Maigaoqiao Station, the first station of Nanjing Metro Line 1, resulted in a 26-hour
follow-up trip from Maigaoqiao Station to Line 1. The upward and downward operation of several stations were
interrupted, the speed of trains on the entire line was restricted and the interval between departures was extended; Since
2019, the subway network of many cities have been suspended differently in time and space due to the impact of the new
crown epidemic on the normal operation of URT™7).So It is urgent to carry out research on the elasticity of URT network
after disruptions, which is of great significance to improve the rapid recovery of URT network after disturbance.

Currently, research on the elasticity of URT network after disturbance is mainly reflected in the evaluation of network
performance after disturbance. Existing studies have mostly used indicators such as robustness®land vulnerability®to
measure the emergency response capability of URT network. For example, complex network theory is used to analyze
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the change of the robustness of the metro network over time in the presence of random disturbance and targeted attacks
through simulation'?. Analyze the network robustness of the metro network under different strategies such as node
attack, edge attack and overload attack through network utilization!!). Estimate the operational interruption time of the
station and characterize the vulnerability of the metro network under disruption events to provide decision support for
failure risk management!'?. Propose an urban rail network resiliency assessment method based on the elastic triangle
model to quantify the performance loss of metro network during disturbance recovery!!*). Based on the dynamic risk
modeling method of complex network, conduct dynamic risk analysis for urban rail transit system!!#,

To compensate for the shortcomings of previous research, this paper proposes to comprehensively consider the network
topology, evaluate the elasticity of the URT network by using the recovery rate of the network performance after the
disturbance as an index and consider the entire process of the URT network from failure to recovery and finally develop
a recovery strategy for the URT network after the disturbance occurs.

2. DISTURBANCE

Disturbance include natural disasters such as earthquakes, rainstorms, mudslides, floods and strong winds, as well as
man-made disasters such as large-scale events, severe weather, terrorist attacks and traffic congestion.

To comprehensively evaluate the impact of disturbance on the URT network, i.e., the whole process from the occurrence
of disturbance to the elimination of their effects, including the action process and the recovery process, the changes in
network performance are shown in Figure 1.
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Figure 1. The whole process of URT network after disturbance
As shown in Figure 1,7, indicates a certain moment when the URT network is in normal operation, , indicates the
moment when the disturbance begins to act,?, indicates the moment when the network begins to recover and?,
indicates the moment when the influence of the disturbance is eliminated. E(¢,)) , E(¢,) ,E(t,) represent the network

efficiency of URT at time,, , ¢, and f, respectively.

3. EVALUATION METHOD OF URT NETWORK AFTER DISTURBANCE
3.1 Robustness and vulnerability evaluation

Robustness is a measure of the ability of a local URT network to withstand shocks and vulnerability refers to the degree
to which the system deviates from normal performance under disturbance conditions. Complex network usually use the
average shortest path length to measure network accessibility and the calculation formula is as follow:
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where, N represents the number of nodes in the network; d ; represents the shortest path length between the two nodes.

In order to quantify the difference in the impact of disturbance failures at different stations of the overall function of
URT network, the network efficiency index is introduced, denoted as £ and the calculation formula is as follow:

o1 1 2)
k= N(N—l)Z d

i#j ij
where, the reciprocal of d[j represents the connection efficiency between the two nodes; E represents network
efficiency.
The calculation formula of robustness is as follow:

1 1
Ry=E(t))=———> —
N(N-1)%d, 3)

where, d U represents the shortest path recalculated after deleting the invalid site.

Correspondingly, the vulnerability of URT network can be quantified by the decrease in network efficiency caused by
station failure and the calculation formula is expressed as:

V:E(to)_E(tL) (4)

According to the formula (3-4), the network efficiency and its decline degree of the urban rail network after the
disturbance event can be calculated as a measure of robustness and vulnerability. The larger the value of R, the greater

the ability of the urban rail network to resist failure and maintain connection efficiency, that is, the better the robustness;
the larger the value of V', the greater the degree of decline in the connection efficiency of the urban rail network due to
disturbance failure, that is, the greater the vulnerability.

3.2 Elasticity evaluation

Elasticity refers to the overall performance of the system from damage to return to normal within a given period of time.
Therefore, the elasticity of the system is measured by the degree of cumulative loss of system performance after a
disturbance.

The calculation formula of elasticity is expressed as:

[ 1E]ar
(4 =1 )E(t) )

E

where, T, represents the elasticity index, £(¢)is the network performance curve, which represents the function of

network performance over time,/, is the starting moment of disturbance failure, f, is the moment when the network

performance returns to the initial state.

4. RECOVERY STRATEGIES FOR RAIL TRANSIT NETWORK DISTURBANCE

4.1 Recovery model after disturbance

This paper proposes a target recovery strategy based on maximizing the elasticity index. The objective function is as
follow:
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where: [T (X l‘)] is the elasticity of the URT network after the disturbance, X is the set of recovery schemes,, (X) is
the moment when the network is completely restored when the recovery scheme X is adopted, x € X , E(x,?) is the
elastic performance of the urban rail transit network atf using scheme X after the disturbance occurs,?;is the repair
completion time of the f station, § is the number of failed stations, S is the time required for each station repair.

4.2 Model solving

In this paper, the adaptive genetic algorithm is used to solve the URT network recovery model after the disturbance with
the aim of maximizing the elasticity index. The steps are as follows:

Step 1 Coding:For the problem of recovering a failed station, the chromosome is divided into segments using the integer
coding method, where each segment is the number corresponding to the failed station.

Step 2 Fitness function: The individual is the recovery plan of the failed station and the group is the set of recovery plans
for the failed station. In this paper, the objective function of maximizing the elasticity index is chosen as the fitness
function and the fitness value is the elasticity index.

Step 3 Selection: In this paper, the method of combining the optimal conservation strategy and the roulette wheel
selection method is used for selection.

Step 4 Crossover:This paper uses an adaptive crossover probability function to calculate the crossover probability, that
is:

T.-T
{al+ul(1nax ])7]1] >T

]:nax - ]:wg o
C (T £ T
Tt 0T
1 avg (7)

where: p_ is the self-adaptive crossover probability, 7 is the maximum value of the elasticity index obtained in the

collection of recovery schemes for each generation of failed stations, 7’

min 18 the minimum value of the elasticity index
obtained in the collection of recovery schemes for each generation of failure stations; 7, " is the the average value of the
elasticity index is obtained from the set of recovery schemes for the failed stations, 7 is the largest elasticity index in the

pair of recovery schemes to be crossed, @, , 4, and u, are adaptive control parameters, which take values at (0,1).

Step 5 Mutation:Mutation probability is also one of the key factors affecting the performance of the genetic algorithm.
The mutation probability is calculated using the adaptive mutation probability function, ie:

{az+u3(Tmax _Tz)’T2 >T

Tmax _T{lvg o
Pu =
uy (T +7,,,) I o<
T,+T 2 e (8)
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where: p is the adaptive mutation probability, 7 is the elasticity index of the current timing scheme to be mutated and

restored, a, , U, , U, are the adaptive control parameters, which take values at (0,1).
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5. CASE STUDY

5.1 URT network topology construction

By the end of March 2023, a total of 8 subway lines have been opened in Xi'an, with a total of 174 stations and an
operating mileage of 279 km. The Space-L method is used to construct the distance-weighted topological network model
of Xi'an subway, as shown in Figure 2.
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Figure 2. Topological network model of metro rail transit in Xi'an

The operating hours of rail transit in Xi'an are from 6:00 to 24:00. In this paper, the morning rush hour (7:30~8:30) of
Xi'an rail transit stations from February 20 to 26, 2023 is used to identify 174 railroad stations. The inbound and
outbound passenger flow in the morning peak hour of the station for 7 consecutive days to obtain the OD passenger flow
in the morning peak hour between 174 stations.

In the absence of data on the actual occurrence of disturbance, this paper uses computer simulation to determine the
impact of the occurrence of disturbance. Assuming that all disturbance occur at 8:00am, random and intentional attacks
are used to simulate network failure due to equipment failure and terrorist attacks. When simulating an equipment failure,
the number of the failure site is randomly determined; when simulating a deliberate attack, the number of the failure site
is determined according to the passenger volume at the morning peak. The failure scenarios simulated in this way are
shown in Table 1.

Table 1. Simulated failure scenarios

Random attack failed site Deliberate attack failed site

2,6,27,39,52,72,85,113,119,157 14,15,18,24,27,33,35,59,64,83

5.2 Disturbance risk assessment

Looking at the failure of stations in the Xi'an metro network, the risk assessment is performed using the two dimensions
of robustness and vulnerability. Calculate the robustness, vulnerability and elasticity of the Xi'an subway network when a
station fails according to the formulas (3 and 4), rank the robustness from small to large, select the top 5 stations and
analyze the results as shown in Table 2.
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Table 2. Robustness, vulnerability and elasticity analysis of disturbed URT network

Station Node degree R, % % |14 % % T,
27 4 0.0912 88.54% 0.0080 7.77% 0.9168
18 4 0.0917 89.03% 0.0074 7.18% 09117
24 3 0.0918 89.13% 0.0074 7.18% 0.9186
35 4 0.092 89.32% 0.0073 7.09% 0.9207
14 4 0.0922 89.51% 0.0070 6.80% 0.9210

As shown in Table 2, the robustness of the metro network is worst after the failure of Station 27, i.e., the main
administrative station, with a robustness index of 0.0912 and a vulnerability index of 0.0080. At this time, the efficiency
of the network is only 91.68% of the normal operating condition, which is a decrease of 8.32%. In addition, most of the
best rated stations are interchange stations with a node degree of 4. The failure of these stations has great impact on the
network efficiency and the ability to withstand failures and maintain the connection efficiency of the remaining normal
stations is lower, so special attention is required.

5.3 Recovery strategies after disturbance occurs

For the convenience of solving, this paper assumes that the URT network is disturbed at time 0, that is,?, = 0 and the

repair time of each station is 1h. According to formula (6-8), during the evolution process, based on the relationship
between the elasticity index of the recovery time series scheme and the average elasticity index of all recovery time
series, dynamically adjust the probability of crossover and mutation.

As shown in Table 3, according to formula (1-5), calculate the network elasticity resulting from using random, recovery,
preference recovery and target recovery strategies under the two disturbance simulation scenarios and compare and
analyze the station repair sequence and network elasticity resulting from different recovery strategies under the two
simulation scenarios. In this paper, two types are selected based on the node degree and station ridership.

Table 3. Analysis of URT network elasticity recovery sequence in two scenes

Scene Recovery strategy Station recovery order elasticity
Random recovery 52—39—-2—113-572-527—-6—157-85—119 0.8743
j\l"de 27-113—6—39—72—85—119—52—157—2 0.8998
Random | Preference cgree
attack recovery Station
39—85—6—113—527—52—119—72—2—157 0.9002
traffic
Target recovery 27—-39—85—113—6—52—119—-2—157—>72 0.9197
Random recovery 18—14—64—35—24—15—27—83—33—59 0.8572
j\l"de 24271433535 18—15—64—59—83 0.8685
Deliberate | Preference cgree
attack recovery Station
64—35—14—18—59—15—-27—33—524—83 0.8707
traffic
Target recovery 64—35—59—18—15—14—27—-33-524—-83 0.9024

Table 3 shows that for the two disturbance scenarios, the target recovery strategy has the best recovery effect for the rail
transit network, followed by the preferred recovery strategy. It can be seen that the target recovery strategy proposed in
this paper can minimize the performance loss of the URT network. It can be seen that the repair order of the failed station
is the key to the elasticity of the URT network and the elasticity of the URT network achieved by choosing different
repair orders is also different.
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Figure 3. URT network elastic recovery curves under two disturbance scenarios

Figure 3 verifies that the repair effect of the target recovery strategy is always the best with the passage of repair time
under two disturbance occurrence scenarios, but there are differences in the repair effect of the two preference recovery
strategies under different disturbance scenarios. Therefore, when choosing the order to repair damaged stations, not only
should consider the damaged stations, but also the impact of damaged station passenger flow on network performance
should be considered.

6. CONCLUSION

The main conclusions are as follows:

(1) This paper defines the disruption and quantitatively analyzes the elasticity of the URT network and proposes a risk
assessment method for the disturbance and then proposes a target recovery strategy model for the URT network after the
disturbance and gives a solution method and validated with the Xi'an metro network.

(2) In the two disturbance scenarios with random and intentional attacks, the target recovery strategy has the best
recovery effect for the URT network, followed by the preference recovery strategy and the random recovery strategy has
the worst recovery effect.

(3) This paper describes the optimal recovery strategy after the failure of the disrupted URT station. The target recovery
strategy can improve the elasticity index of the URT network, reduce the performance loss of the network and provide
support for recovery decisions after the disturbance occurs. In the next step of the research, the recovery time and
recovery cost can be further considered and the specific details of the recovery time and recovery cost can be further
explored based on the determination of the optimal recovery sequence of the URT network.
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