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ABSTRACT

Graph-based traffic flow predictioning is widely applied in traffic systems, where constructing intricate spatiotemporal
correlation models from relevant time series data is imperative for comprehending the dynamics of the traffic system. The
extraction of features from graphical data, coupled with the integration of time series data, serves to enhance the accuracy
of traffic flow predictions. Additionally, the challenge arises when real traffic flow data often contains missing values.
Predicting traffic in scenarios with missing data proves to be challenging, as existing traffic flow predictioning methods
frequently lack the capacity to model dynamic spatiotemporal correlations in the presence of such gaps, leading to
unsatisfactory prediction outcomes. This paper introduces the Adaptive Spatiotemporal Graph WaveNet-based Graph
Convolutional Network (AST-GW-GCN) to tackle traffic flow predictioning. AST-GW-GCN comprises three independent
components, each modeling short-term, daily, and weekly dependencies of traffic flow. Within each component, Gated
Temporal Convolutional Network (TCN) and Graph Convolutional Network (GCN) serve as encoders, conducting spatial
convolution to extract spatial correlations and temporal convolution to capture temporal correlations, thereby generating
hidden features. The Gated Recurrent Unit (GRU) is employed to decode these hidden features and weigh the outputs of
the three components, producing the final prediction result. The spatial convolution module establishes an adaptive
adjacency matrix to overcome the physical constraints of the graph structure, facilitating improved extraction of hidden
spatial dependencies within the data. Furthermore, experiments are conducted under various data missing patterns and
missing ratios. The experimental findings, based on the PeMS08 real dataset, demonstrate that the proposed AST-GW-
GCN comprehensively captures spatiotemporal correlations in the data, outperforming baseline models in terms of
performance.
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1. INTRODUCTION
The significant rise in the number of automobiles has contributed to an escalating gap between road supply and demand,
consequently leading to congested traffic conditions. Confronting this challenge, many nations have taken a proactive
stance in the advancement of Intelligent Transportation Systems (ITS) as a strategic initiative for the effective management
and handling of traffic. The development and application of Intelligent Transportation Systems (ITS) have proven to be
effective in improving traffic conditions, reducing congestion, and enhancing travel efficiency. Real-time, accurate, and
reliable traffic information serves as a fundamental basis for ITS, and this information is often embedded within a vast
amount of traffic data. Among these data, traffic flow serves as a fundamental indicator that reflects the state of the road.
Accurate prediction of traffic flow allows traffic management authorities to make more informed decisions regarding
vehicle dispatch and management, ultimately enhancing the operational efficiency of the road infrastructure.

Road traffic flow prediction is a general prediction problem that relies on real-time spatiotemporal data. With the
deployment of data collection equipment such as cameras and sensors on highways, rich traffic time series data sets have
been accumulated, providing a solid foundation for traffic flow prediction. Traffic flow prediction is complex, influenced
by factors such as temporal variations (time of day, seasonality), spatial considerations (geographical location,
intersections), historical data, and external events (accidents, weather). Social aspects, including special events and
holidays, along with traffic management measures, public transportation, and economic factors, collectively shape traffic
dynamics.Early simple linear time series predicted models were used for traffic flow predictioning. However, these
methods require the data to satisfy certain assumptions, which are often not met by the complicatedity and nonlinear nature
of traffic data, causing them to perform poorly in practice. Subsequently, in response to the evolving landscape, machine
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learning methods were leveraged to model increasingly intricate and complex datasets. This strategic adoption of machine
learning techniques reflects a dynamic effort to capture and analyze the nuances present in the growing complexity of data
structures. However, their limitations included, on one hand, they could not effectively consider the spatiotemporal
relationship of high-dimensional traffic data, and on the other hand, the prior knowledge provided by expert experience
greatly affected the model. accuracy. In the contemporary era, the utilization of deep learning methods has not only gained
widespread recognition but has also become a focal point of interest among scholars. This increasing attention underscores
the significance and potential of deep learning approaches in addressing the complexities inherent in traffic flow prediction.
Convolutional neural networks (CNN) can extract spatial features from grid data, combined with graph convolutional
networks (GCN) to capture spatiotemporal correlations. Nonetheless, these methods still have room for improvement in
capturing spatiotemporal dependencies and dynamic correlations in traffic flow data.

In practical scenarios, real-world traffic data frequently display imperfections, and the task of accurate traffic flow
predictioning becomes challenging when faced with data loss or missing information. This inherent data imperfection
poses a notable obstacle in achieving precise predictions of traffic flow. Encoder-decoder based traffic prediction models
have received little research attention.

In summary, we propose a new model: the Spatiotemporal Graph Convolutional Network based on Graph Wavelet
Adaptation. This model facilitates the modeling of spatiotemporal graphs under various data missing patterns. The paper
introduces a dynamic dependency matrix, acquired through the learning process of node embeddings, effectively capturing
latent spatial dependencies within the data. The contributions can be delineated as follows:

∂ The use of an adaptive adjacency matrix that does not rely on the actual graph structure is employed to capture
spatiotemporal correlations within the data. Specifically, it breaks free from the physical constraints of the
traditional real road network graph structure, allowing for a better exploration of hidden spatiotemporal
dependencies and dynamic correlations among nodes in real highway traffic scenarios.

∂ In consideration of the inevitability and ubiquity of data missing in real traffic scenarios, the study investigates
prediction results under various data missing patterns. Given the richness of real traffic data, predicting traffic
under missing data scenarios presents a more challenging and practical aspect.

∂ Modeling is carried out for three traffic cycles: recent, daily, and weekly cycles, incorporating temporal dimension
convolution within the dependency relationships in different time cycle dimensions.

∂ The model utilizes an encoder-decoder architecture to effectively capture long-term dependencies in input
sequences of vast and complex nonlinear traffic data.

2. RELATED WORK
2.1. Traffic prediction

Model-driven methods primarily involve simulating the instantaneous or steady-state relationships between traffic
parameters in specific scenarios. They offer the advantage of modeling complex traffic scenarios, capturing the movement
characteristics of individual traffic entities, and understanding the overall operational rules of the traffic system. However,
they also lack precision in scenarios with large data volumes, and perform suboptimally in irregular traffic conditions.

In the realm of data-driven approaches, several early methodologies [1-2] have been explored. Though effective, they are
still inferior to data-driven methods.

Recurrent neural networks (RNN) including long short-term memory (LSTM)[3] and gated recurrent unit (GRU)[4] can
extract temporal correlations effectively. Models that combine RNN and 1D CNN[5] usually achieve better performance.
However, considering the complicacy of the traffic system structure, models based on RNN or one-dimensional CNN still
have limitations in modeling spatial dependence.

2.2. Graph Neural Network for traffic prediction

The transportation network is a typical graph structure. In order to simultaneously capture spatiotemporal dependencies,
by performing convolution on graph-structured data, graph convolution can directly learn the representation information
hidden in the graph structure, and can also consider the internal features of the traffic network to extract semantic
dependencies.
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Diffusion-convolutional neural network[6] takes graph convolution for a process of passing from one node to another node
until convergence is stable. Graph WaveNet[7] put forwards an adaptive adjacency matrix as a supplement to the priori
adjacency matrices. ST-A-PGCL[8] extracts spatiotemporal correlation with missing values through periodical adaptive
graph contrastive learning.

3. METHODOLOGY
3.1. Problem description

Given a traffic network ܩ = (ܸ, ,ܧ ܹ), where ܸ denotes road nodes, denotes edges connecting these nodes, and ܧ ܹ
represents a weighted adjacency matrix derived representing edge weight information. If ߥ , ߥ ∈ ܸ and ߥ) , (ߥ ∈ then,ܧ

ܹ  is 1, otherwise it is 0. Given ܺ, expressed as

ܺ = { :ܺ,, :ܺ,ଵ, … , :ܺ,௧ , … }           (1)

where :ܺ,௧ = ଵ,௧ݔ} , ଶ,௧ݔ , … , ,,௧ݔ … , ்{ே,௧ݔ ∈ ܴே×ଵ is the traffic value of N nodes on the transportation network in the past τ
time slice Historical measurement values, the problem becomes predicting t steps of future traffic flow data based on the
passing T steps, that is:

൛ :ܺ,୲ାଵ, :ܺ,୲ାଶ, … , :ܺ,௧ାఛൟ = φ( :ܺ,୲, :ܺ,୲ିଵ, … , :ܺ,௧ି்ାଵ; G)      (2)

Consider the scenario where traffic flow data is gathered times each day, and the window size is denoted as ݍ ܶ. Three
time series segments, with lengths ܶ , ௗܶ and ௪ܶ, are respectively selected as inputs for the recent, daily, and weekly
periodicities. Here, ܶ , ௗܶ  and ௪ܶ are integer multiples of ܶ.

Through the learning mapping function ݂ of the neural network, the missing value ܻ = ݂(ܺ , ܺௗ , ܺ௪) is calculated to
make ܻ as close to ܻ.

By employing the neural network's learning mapping function, denoted as ݂ , the missing value ܻ  is computed as
݂(ܺ , ܺௗ , ܺ௪) with the objective of minimizing the difference between ܻ and the true value ܻ.

3.2. Model framework

Fig 1. The framework of AST-GW-GCN.

Figure 1 shows the architecture of the AST-GW-GCN with four parts.

3.3. Inputs

3.3.1 Periodic components

The recent period refers to the input that is contiguous to the prediction period. Intuitively, the development and dissipation
of traffic congestion occur gradually. Hence, traffic flows in the recent past are bound to influence future traffic flows.

The daily period is the historical time series data calculated in daily units in the past few days that is similar to the prediction
period. Traffic data may have repetitive patterns due to people’s daily routines, such as the daily morning rush hour.

The weekly period comprises segments from recent weeks that share the same weekly features and time intervals as the
prediction period. Hence, the cycle component is devised to capture the cyclic characteristics inherent in traffic data.
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3.3.2 Missing patterns

Random missing is the random occurrence of missing values in the data. We randomly replace a certain proportion of the
data in the data set with null values to simulate the missing situation.Block missing is a large area of missing values in the
data. We randomly replace a certain area of data in the data set with null values to simulate the missing situation.

3.4. Encoders

3.4.1 Spatial Convolution

GCN is essentially a matrix neural network based on a graph structure. Its matrix layer structure contains predefined
adjacency matrices and their related feature matrices as input signals, and its equation is expressed as[9]:

ାଵݕ = ෩ିభܦ)ߪ
మܣሚܦ෩ିభ

మݕ ܹ)                                    (3)

where ,is denotes activation function ߪ ሚܣ = ܣ + ,denotes self-loop adjacency matrix ܫ ,෩ is the correspondence matrixܦ
ܹ is the weight matrix of the lth convolutional layer, ݕ ାଵ represents the output andݕ = ܺ.

In Graph WaveNet[7], the adaptive adjacency matrix ሚௗܣ  can discover hidden spatial dependencies on its own. The
adaptive adjacency matrix randomly initializes two embedding dictionaries, in which the parameters ,ଵܧ ଶܧ ∈ ܴே×can be
automatically learned, and the adaptive matrix is expressed as[7]

ሚௗܣ = ଶܧଵܧ)ܷܮܴ݁)ݔܽܯݐ݂ܵ
்))              (4)

Among them, ଵܧ  is the source node, ଶܧ  is the target node, ReLU is the activation function, and SoftMax function
normalizes the adaptive matrix. We utilize the adaptive adjacency matrix to substitute the adjacency matrix in equation
(3), and finally The convolutional layer is expressed as

ାଵݕ = ෩ିభܦ)ߪ
మܣሚௗܦ෩ିభ

మݕ ܹ)               (5)

3.4.2 Temporal Convolution

Gating in recurrent neural networks can effectively get command of the message passing between temporal network layers.
Given the input ܺ ∈ ܴே××ௌ, its form is[7]

ℎ = ଵߠ)݃ ∗ ܺ + ଶߠ)ߪ⨀(ܾ ∗ ܺ + ܿ)          (6)

Among them, ,ଵߠ ,ଶߠ ܾ, ܽ݊݀ ܿ  are model parameters, ⨀  denotes element product, ݃(⋅)  and (⋅)ߪ  are activation
functions, which determine the information output ratio.

3.5. Decoders

The model employs a GRU[4] as the decoder to unravel the hidden representation from the encoder and subsequently
conduct traffic predictioning on the time series. The GRU is illustrated in Figure 2.

Fig 2. Overall structure of gated recurrent unit

The following is the formula representation of GRU，

௧ݎ = )ߪ ܹ ⋅ [ℎ௧ିଵ , ([௧ݔ          (7)

௧ݖ = )ߪ ௭ܹ ⋅ [ℎ௧ିଵ, ([௧ݔ          (8)

ℎ෨௧ = ܹ) ℎ݊ܽݐ ⋅ ௧ݎ] ∗ ℎ௧ିଵ, ([௧ݔ             (9)
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ℎ௧ = (1 − (௧ݖ ∗ ℎ௧ିଵ + ௧ݖ ∗ ℎ෨௧       (10)

Among them, ௧ݎ  is the reset gate, ,௧ is the current inputݔ ℎ௧ିଵ is the previous hidden layer output, ௧ is the updateݖ
gate, ℎ෨௧ is the update value, ℎ௧ is the final output.GRU combines the local input and the upper layer output with Sigmoid
to obtain the reset gate and update gate.

3.6. Outputs

The three periodic components are dynamically fused to obtain the final output result.The equation is expressed as:

ܪ = ∑ ܹ × ܪ
ே
ୀ           (11)

Where , is the fused hidden featureܪ , is the candidate featureܪ ܰ is the number of candidate features, and ܹ
is the weight parameter.

4. EXPERIMENTS
4.1. Experimental setups

We use the dataset PeMS08 published by Song[10]. The data set is aggregated at 5-minute intervals, with all data collected
every 30 seconds. The PeMS08 dataset spans 62 days and contains 170 Nodes and 275 Edges. This research was carried
out within the Python 3.7 environment. The dataset was assigned to training, validation, and testing data as a ratio of 7:1:2.
All core models and the AST-GW-GCN model were trained under random missing and block missing modes, yielding
missing rates of 20%, 40%, and 60%, respectively. The average performance index of the models was then computed.

4.2. Baselines

Evaluate the efficacy of four fundamental models using the PeMS08 dataset under the 20% random missing mode. Utilize
a 12-time step historical data to prediction future traffic flow at intervals of 9, 12, 15, 18, 21, 24, 27, and 30 time steps,
respectively.. LSTM-NN[6], GRU-NN[7] and GWNet[12] were selected as baseline models.

5. RESULTS
Table 1. In the case of 20% random missing, the comparison results of prediction indicators based on the PeMS08 data set and the

baseline model

Model MAE RMSE
LSTM-NN 49.3089 69.0101
GRU-NN 48.3451 67.6521
GWNET 31.5187 45.9158
AST-GW-GCN 19.5140 29.9073

As depicted in Table 1, our model has demonstrated superior performance across diverse predictioning metrics. With the
incorporation of the transformer architecture, our model exhibits advancements in comparison to time series predictioning
models like LSTM and GRU,The long-term dependency problem can be better solved, and our model performance far
exceeds these two baseline models. Compared with the GWNET baseline spatiotemporal prediction model, our model
architecture is able to detect the spatiotemporal correlation at each time stage. The Transformer structure introduces a self-
attention mechanism to also make the input data more interpretable.

Table 2. Model prediction index results under different data missing modes and proportions

Missing Patterns MAE RMSE
BLOCK0.2 21.0241 31.5903
BLOCK0.4 22.2518 33.2242
BLOCK0.6 22.2083 33.9239
RANDOM0.2 19.5140 29.9073
RANDOM0.4 20.7546 31.7451
RANDOM0.6 23.1397 34.9427
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Table 2 contrasts the predictive metrics of the model in the block missing mode and the random missing mode at missing
proportions of 20%, 40%, and 60%, respectively. The model achieves optimal predictioning performance under the 20%
random missing mode.

Fig 3. The predictive efficacy of AST-GW-GCN and baseline models varies with the prediction length.

With the extension of the prediction horizon, the baseline model exhibits a gradual decline in predictive performance.
Notably, the prediction performance of the AST-GW-GCN model experiences a more pronounced decrease compared to
the other baseline models.. This is because the input of the model contains periodic branches that express long-term traffic,
and because the use of an encoder-decoder structure allows the model to effectively capture the long-range dependencies
of time series data, our model is more efficient than the baseline model. Suitable for long-term series predictioning tasks.

6. CONCLUSION
We introduce an adaptive spatiotemporal graph convolutional network (AST-GW-GCN) founded on the GraphNet[12]

framework for the prediction of traffic flow. This model can predict long-term series of traffic flow data without pre-set
graph structure. Our model uses an encoder-decoder architecture and captures spatiotemporal dependencies simultaneously.
Within the input module, we incorporate near-period, daily period, and weekly period. In the encoder module, the adaptive
adjacency matrix enables the autonomous learning of concealed spatial dependencies from the data, all without prior
knowledge. The model further conducts comparative experiments with the baseline model across various data missing
patterns and proportions, revealing superior prediction performance. In future endeavors, we aim to consider external
factors like weather and traffic accidents to enhance performance.

REFERENCES

[1] Williams,B.,Hoel,L.(2003)Modeling and predictioning vehicular traffic flow as a seasonal ARIMA process:
Theoretical basis and empirical results.J. Transp.Eng., 6:664–672.

[2] Guo,J., Huang,W., Williams,B.(2014) Adaptive Kalman filter approach for stochastic short-term traffic flow rate
prediction and uncertainty quantification.Transp. Res. Part C Emerg. Technol.,43 :50–64.

[3] Hochreiter,S.,Schmidhuber,J.(1997)Long short-term memory.Neural Comput.,8:1735–1780.
[4] Cho,K.(2014)Learning phrase representations using RNN encoder-decoder for statistical machine

translation.Comput.Sci.
[5] Wang,K.,Ma,C.,Qiao,Y.,Lu,X.,Hao,W.,Dong,S.(2021)A hybrid deep learning model with 1DCNN-LSTM-

attention networks for short-term traffic flow prediction.Phys. Stat. Mech. Its Appl.,583: 126293.
[6] Atwood,J.,Towsley,D.(2016)Diffusion-convolutional neural networks. The 30th International  Conference on

Neural Information Processing Systems. USA.pp.2001-2009.
[7] Wu,Z.,Pan,S.,Long,G.,Jiang,J.,Zhang,C.(2019)Graph wavenet for deep spatial-temporal graph modeling. In: The

28th International Joint Conference on Artificial Intelligence.pp.1907–1913.
[8] Qu,Y.,Rong,J.,Li,Z.,Chen,K.(2023) ST-A-PGCL: Spatiotemporal adaptive periodical graph contrastive learning

for traffic prediction under real scenarios. Knowledge-Based Systems,272.
[9] Kipf,T.,Welling,M.(2017)Semi-supervised classification with graph convolutional networks.In: ICLR.
[10] Song,C.,Lin,Y.,Guo,S.,Wan,H.(2020)Spatial-temporal synchronous graph convolutional networks: A new

framework for spatial-temporal network data predictioning.In:Proc. AAAI Conf. Artif. Intell.pp.914–921.

Proc. of SPIE Vol. 13018  1301817-6


