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ABSTRACT 

The fatigue detection method based on neural network has been widely applied in the field of land transportation. The 

accuracy varies by different methods and solutions. Disadvantages of current widely applied methods for fatigue detection 

have been exposed by rational review, e.g., cost-effective, potable implementation issues. Cascade width learning based 

detection method with outstanding features is a sound solution to overcome shortcomings of other traditional detection 

methods. Therefore, it is of great significance and value to research this method and present its academic value and 

applicable values. This paper introduces a cascade width learning based fatigue detection method. The paper looks forward 

to development of cascade width learning based fatigue detection method, both academic and applicable values of proposed 

method have been presented by rational evaluation based on rational discussion on experimental results, the results prove 

that proposed method has achieved 94.9% accuracy in 52.43ms, which suggests more accuracy and fast speed than other 

common methods including: combinations of LBP and SVM, ASM and Fuzzy, CNN and PERCLO. 
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1. INTRODUCTION 

Road accidents persist as a significant public health concern, prompting ongoing efforts to enhance vehicle capabilities in 

recognizing and analyzing road conditions to prevent mishaps and safeguard passengers. Consequently, understanding 

driver behavior, particularly regarding fatigue—a leading cause of accidents and fatalities—has emerged as a prominent 

research focus. This paper proposes a method for analyzing and predicting driver fatigue through a review of pertinent 

research studies. 

Fatigue encompasses visual, mental, and physical aspects, gradually impairing reaction speed, concentration, and alertness 

during prolonged or intense activity. Notably, fatigue exacerbates visual and mental strain and induces physical exhaustion. 

Muscle fatigue, occurring during sustained contraction or exertion, is detectable through changes in electromyographic 

signals and other physiological markers, reflecting its severity1. 

Recent advancements in neural network-based fatigue detection have yielded algorithms comparable in accuracy to 

physiological signal-based methods. Leveraging neural networks’ proficiency in facial feature extraction and key point 

localization, these methods offer enhanced speed, accuracy, and robustness. As sample sizes grow and hardware 

capabilities improve, neural network-based fatigue detection is poised to become even more efficient and precise. This 

paper will introduce such a method and its industry applications. 

2. FATIGUE DETECTION METHOD BASED ON NEURAL NETWORK 

2.1 Visual fatigue detection 

Visual fatigue stems from various factors such as eye physiology, environmental conditions, and mental state. Common 

eye issues like astigmatism, myopia, and hyperopia, coupled with insufficient ambient light and contrast, contribute to 

visual fatigue. 

Detection of human eye state is crucial for assessing fatigue levels, especially for vehicle drivers2. Face detection forms 

the basis for this assessment, yet its accuracy is affected by factors like facial expressions, movements, lighting conditions, 

and occlusions3. Algorithms like the Active Shape Model (AAM) and Cascaded Pose Regression (CPR) have been 
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developed to enhance face detection accuracy4. 

The perclos criteria, introduced in the 1970s, utilize eye angle, blinking frequency, and pupil occlusion rate to gauge driver 

fatigue5. This method, endorsed by experts from the U.S. Federal Highway Administration, provides a non-contact, real-

time fatigue assessment and is widely adopted in fatigue detection5. 

Based on the degree of eye closure over time, perclos criteria define three standards—EM, p70, and p80—indicating 

varying levels of eye closure corresponding to fatigue. Despite differing judgment standards, the underlying principle 

remains consistent: the duration of eye closure per unit of time determines the fatigue level5. 

As shown in Figure 1, we take p80 criterion as an example, during T4-T1, the pupil of the eye is considered closed when 

the closure is more than 80%, in the meanwhile, perclos ration in the period of time of T3-T2 is calculated as:  

 𝑝𝑒𝑟𝑐𝑙𝑜𝑠 =
T3−T2

T4−T1
 (1) 

 

Figure 1. Degree of open and closure of human eye pupils4. 

To compute the perclos value using machine vision, it’s essential to convert the time ratio to a frame ratio, representing 

the number of eye closure frames relative to the total frames per unit of time5. This calculation is done using equation (2): 

 𝑝𝑒𝑟𝑐𝑙𝑜𝑠 =
Nc

N
 (2) 

In which, Nc denotes the number of closed-eye frames and N denotes the total number of frames per unit of time. A number 

of previous researches have revealed that p80 criterion is the best way to accurately reflect the level of driver fatigue5. 

2.2 Brain fatigue detection 

Brain fatigue manifests as declines in attention, memory, and alertness, posing challenges for detection6. Studies indicate 

that intense brain activity results in fatigue-related changes in brain waves, including α, β, and theta waves6. Russell et al. 

developed a convolutional neural network optimization method for monitoring pilot fatigue, while Li et al. constructed a 

driver fatigue recognition model using deep sparse self-coding networks, showing superior classification performance7,8. 

Luo et al. proposed a fatigue classification algorithm based on Gamma deep belief networks, achieving notable recognition 

accuracy and stability9. 

The accuracy of EEG signal analysis depends on electrode placement methods, categorized as entry, semi-entry, and non-

entry types10. Entry and semi-entry methods are more effective but require specialized expertise and support. Consequently, 

fatigue detection primarily utilizes EEG signals from the cerebral cortex, although this approach is hindered by cost and 

inconvenience10. 

2.3 Feature fusion detection 

Features fusion detection of fatigue is capable of improving accuracy of fatigue detection. For example, by positioning 

face feature points, fatigue features can be recognized using Eye Aspect Ratio (EAR) and Lip Aspect Ratio (Mouth Aspect 

Ratio, MAR)10, and the recognition points are shown in Figures 2 and 3, and the EAR and MAR calculation equations are 

respectively: 

T1 

T2 

T3 
Time/s 

T4 

20 

100 

80 

E
y

e’
s 

o
p

en
 d

eg
re

e 
\ 

%
 

Proc. of SPIE Vol. 13395  1339520-2



 𝐸𝐴𝑅 =
(P2− P6)+(P3−P5)

2(P1−P4)
 (3) 

 𝑀𝐴𝑅 =
(P2− P8)+(P3−P7)+(P4−P6)

3(P1−P5)
 (4) 

  
Figure 2. Recognition makers on the eye and mouth10. 

 

Figure 3. The structure of width learning system16. 

2.4 Weaknesses of current fatigue detection method 

Visual and brain fatigue detection methods based on neural networks have shown promise, but they also exhibit 

shortcomings. Visual fatigue detection, while fast and convenient, is susceptible to accuracy issues when head movements 

or light blockages occur11. Brain fatigue detection via EEG signals requires filtering and frequency domain analysis, 

making signal extraction complex and costly10. Multi-feature fusion detection enhances accuracy but slows detection speed 

due to increased task complexity12. 

The rapid development of neural network models is facilitating the creation of portable and accurate detection systems13. 

In visual fatigue detection, neural networks are utilized for face recognition and eye localization, such as the MTCNN 

network improving accuracy through additional network layers14. 

Current fatigue detection methods for drivers rely on large, accurate sensors, but lack real-time, non-invasive 

functionality3. Future trends should focus on real-time detection, multi-feature fusion, and non-invasiveness. Lightweight 

neural networks can enhance real-time detection speed, while multi-task convolutional neural networks can fuse features 

for improved accuracy3. Non-invasive approaches, such as machine vision or wearable micro-detection devices, are crucial 

for unobtrusive fatigue assessment3. Thus, Cascade Width Learning-based methods could offer a viable solution for fatigue 

detection. 
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3. CASCADE WIDTH LEARNING BASED DETECTION METHOD 

The cascade width learning-based detection method emerges as a prominent technological trend for the future15. Unlike 

traditional machine learning algorithms, deep networks significantly enhance classification and regression performance, 

yet their complex structures with numerous hyperparameters often lead to prolonged convergence times. To address this, 

Chen et al. propose a width learning system aimed at reducing model training time and enhancing task efficiency16. This 

system, depicted in Figure 3 involves generating mapping features from original data, enhancing them with randomized 

weights, and then utilizing both sets of features as inputs to a single-layer perceptron. 

 Zi = ϕi(XWei
 + βei

), i = 1, 2, ..., n (5) 

 Hj = ξj(ZiWhj + βhj), j = 1, 2, …, m (6) 

Equation (5) demonstrates the method for generating the ith set of mapping features Z, utilizing original input data X, 

random weight matrix Wei with Gaussian distribution, bias constant βei
, and sparsification and regularization function ϕi. 

Equation (6) illustrates the generation of the jth set of augmented features Hj, where Zi represents overall mapping features, 

Wh
j
 is the random matrix post-orthogonal regularization, βhj

 is the bias constant, and ξj is the nonlinear function. Equation 

(7) outlines the expression of BLS, where Hj represents all augmented features, Wm denotes connection weights, and Y 

signifies the network output. Adjusting the values of i and j allows adaptation to tasks of varying complexity. 

 Y = [Z1, ..., Zi| ξ(Zi Wh1
 + βh1

)),…, ξ(Zi Whj + βhj
)] Wm = [Z1, ..., Zn | H1, ..., Hj] Wm=[Zi | Hj]Wm (7) 

BLS applies Gaussian filtering and sparse representation to original data during mapping node generation to reduce noise 

and linear correlation15. For augmented node generation, BLS maps data to a high-dimensional subspace using orthogonal 

matrices to enhance linear differentiability, then employs nonlinear functions to increase network model nonlinearity16. 

The image input to the network is represented by equation (8), where I(n, n) denotes the pixel value at position (n, n) and 

X represents the network input. Output labels Y classify the state of each eye and mouth image, with open eyes or mouth 

labeled as 0 and closed eyes or mouth labeled as 1. 

 X = [I(1, 1) ,…, I(1, n), I(2, 1) ,…, I(n, n)] (8) 

Let Xzh = [Z1, Z2, ..., Zn, H1, H2, ..., Hm], the network connection weights are solved as shown in equation (9).  

 Wm = (XZH
TXZH + αI)-1XZH

TY (9) 

Compared to backpropagation in multi-layer neural networks, BLS employs the pseudo-inverse method, significantly 

reducing network training time15. BLS also supports three incremental learning methods—augmentation node increment, 

feature node increment, and input data increment—facilitating parameter updates through the calculation of pseudo-

inverses for newly added nodes, further reducing training time16. 

As shown in Figure 4, Driver head attitude encompasses pitch, yaw, and roll. In a fatigued state, the head typically rotates 

downward. Small rotations around the y-axis may indicate mirror checking, while excessive rotation suggests a violation 

of path viewing.  

 

Figure 4. Coordinate system for head positioning15. 

The face pose model is established using the nonlinear least squares method, as shown in equation (10). The basic head 

pose angle, represented by (α, β, γ), is calculated using POSIT. Here, n denotes the number of face feature points used to 

construct the model, qi represents the facial feature points in the image, pi denotes the feature points of the 3D generalized 

standard model, R is the rotation matrix, t is the spatial offset, and C is the scaling factor. 

 𝑓(α, β, γ) = min {  ||qi − C · [R(α̂, β̂, γ̂) · pi + t]|| 2𝑖=1
𝑛 } (10) 
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When the driver lowers his head more than 30 degrees, which suggests pitch<-30°, or turns his head left or right more than 

30 degrees which suggests |Yaw| > 30°, the head state Sh is set to 1, otherwise it is set to 0, as shown in equation (11). 

 𝑆ℎ = 𝑓(𝑥) = {
1, 𝑖𝑓(𝑎 <  −30° 𝑜𝑟 |𝛽| >  30°)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                
 (11) 

Fatigued drivers exhibit increased eye closure time, yawning, and a larger head pitch angle. There exists a contextual 

correlation between changes in eye state, mouth state, and head pitch over time. Equation (12) constructs a facial state time 

series to characterize these changes, where Sen
, Smn

, Shn
 represent the state of the eyes, mouth, and head at frame n, 

respectively. 

 𝑆 = [𝑆𝑒
1

, 𝑆𝑒
2

, … , 𝑆𝑒
𝑛

, … , 𝑆𝑚
1

, 𝑆𝑚
2

, … , 𝑆𝑚
𝑛

, … , 𝑆ℎ
1

, 𝑆ℎ
2

, … , 𝑆ℎ
𝑛

, … ] (12) 

Facial state time series S is labeled as 1 for fatigue and 0 for normal states. A BLS fatigue detection network is trained 

using S and its corresponding labels. The fatigue detection process is illustrated in Figure 5. 

 

Figure 5. The workflow of cascade width learning based fatigue detection system16. 

4. RESULTS AND DISCUSSION 

The experimental platform features an Intel(R) Core(TM) i7-10700k processor with a 3.8GHz main frequency and 16GB 

of RAM. The Kaggle face key points dataset comprises 7000 96×96 grayscale face images labeled with 15 key points. 

After expanding the dataset through rotation, 9000 images are obtained, with 6750 for training and 2250 for testing. The 

test set’s mean square error is 1.95, indicating an average offset error value of 1.4 for each key point. 

For fatigue detection, a facial fatigue video dataset (MT-F) is utilized, consisting of videos collected from 9 volunteers 

under various conditions. From these videos, 2000 open and closed eye images and open and closed mouth images are 

extracted for training and testing. A set of 60 consecutive frames is selected from each video type at a frame rate of 20fps 

to create facial temporal state sequences S for training and testing the fatigue detection network. 

The width learning network adjusts its structure by altering the number of nodes. The restructuring process of the eye state 

recognition network is depicted in Table 1, wherein the number of enhancement nodes is gradually increased to enhance 

recognition accuracy. The mouth state recognition network comprises 100 mapping nodes and 2500 enhancement nodes, 
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while the fatigue detection network features 50 mapping nodes and 600 augmented nodes. The average training time for 

the BLS eye state recognition network is 1.6 s. 

Table 1. BLS eye state recognition network tuning process. 

Mapping node Enhancement node Accuracy % 

100 1000 94.6 

100 2000 95.4 

100 3000 96.7 

100 3500 95.9 

200 3000 96.2 

400 3000 95.5 

The DROWSY database comprises 3 videos per tester at various fatigue levels, excluding sunglasses. Table 2 presents the 

results of human eye state recognition on both the MT-F and DROWSY databases. Recognition accuracy on MT-F is lower 

than DROWSY due to complex lighting and sunglasses occlusion. The mouth state recognition accuracy is 98.3%. 

Table 2. Eye and mouth condition recognition results. 

Facial area Dataset Data volume Accuracy % 

Mouth MT-F 1000 98.3 

Eye 
MT-F 1500 96.5 

DROWSY 1500 99.2 

The algorithm is tested with videos consisting of 60 frames per segment, with results presented in Table 3. To validate the 

effectiveness of multiparameter fusion, videos are detected using a fatigue detection network trained with eye state 

sequences and another trained with facial state sequences. Experimental findings indicate that the multi-parameter fusion 

network achieves higher detection accuracy. 

Table 3. Fatigue detection results. 

Manner Dataset Mode Data volume Accuracy % 

Single 
MT-F 

No glasses 400 94.5 

Lens 400 92.8 

Sunglasses 200 90.5 

DROWSY  500 94.8 

Multi 
MT-F 

No glasses 400 96.3 

Lens 400 94.5 

Sunglasses 200 93.5 

DROWSY  500 96.5 

To validate the proposed algorithm’s superiority, it is compared with other fatigue detection algorithms in terms of 

detection accuracy and time, as depicted in Table 4. The proposed algorithm exhibits higher accuracy than CNN+PER 

CLOS due to improved detection accuracy through multiparameter fusion. While the BLS and CNN-based methods have 

longer detection times compared to traditional methods, attributed to increased network parameters, the proposed algorithm 

achieves a 6.18ms reduction in detection time despite using multiple parameters. 
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Table 4. Algorithm performance comparison. 

Algorithm Accuracy % Time /ms 

LBP + SVM 89.7 44.32 

ASM + Fuzzy 91.0 45.84 

CNN + PERCLO 93.1 58.61 

Proposed method  94.9 52.43 

5. CONCLUSION  

this paper outlines classical driving fatigue detection methods, discussing their advantages and disadvantages through 

rational comparison. various applications of neural networks in fatigue detection are analyzed and compared. to validate 

the proposed method’s performance and efficiency, a verification experiment is conducted using an infrared camera to 

mitigate the impact of light changes and glasses on detection results. A CNN regression network is employed to detect 

facial key points based on a width learning system. the driver’s fatigue state is inferred through the sequence of eye, mouth, 

and head states using a second-level width learning network. results indicate a detection accuracy of 94.9% and a single-

frame detection time of 52.43 ms, demonstrating superior real-time accuracy compared to traditional methods. the 

experimental outcomes underscore the academic and practical significance of the proposed method. 
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