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ABSTRACT 

Federated learning has more flexible data ownership participants, therefore its data (sample feature vector or label) is more 

likely to be changed, and it is more vulnerable to data poisoning by malicious users, resulting in the final global model not 

getting the expected effect. This paper focuses on this data poisoning defense problem and applies the traditional 

centralized machine learning pruning optimization method to each client of federated learning. Each client needs to execute 

before each global iteration. Pruning optimization algorithm to remove abnormal data. The experimental results indicate 

that when the discrepancy between abnormal and normal samples is significant, the pruning optimization algorithm 

effectively eliminates the outliers, thereby minimizing their impact on the final federated learning model. 
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1. INTRODUCTION

Federated learning can overcome the challenge of data isolation by enhancing data utilization through collaborative 

modeling among data participants without the need for data sharing1. As shown in Figure 1, The training process in the 

traditional federal learning structure is typically segmented into three stages: 

(1) Initialization: All end users on their local devices receive a pre-assigned, well-optimized machine learning model. The

terminal may choose to participate in the learning protocol and align on the same machine learning and model training

objectives.

(2) Local training: In a specific communication round, federated learning participants begin by downloading the global

model parameters from the central server. They then train the model using their private training data, generate local model

updates (i.e., model parameters), and transmit these updated parameters back to the central server.

(3) Model aggregation: The global model for the subsequent round is derived by aggregating all the model updates from

various training samples and performing linear weighting calculations. Throughout the federated learning process, these

steps are iteratively executed to optimize the current global model. The iteration process concludes when the global model

parameters satisfy the convergence criteria.

Figure 1. Federated learning system architecture. (a): The party that owns X sample; (b): The party that owns Y sample; (c): Continuously 

interact with intermediate calculation results under encryption protection, such as gradients, step sizes, etc.; (d): Update model 

parameters. 

However, the application of federated learning is not smooth, and there are two kinds of problems: data security and model 

security. This paper mainly discusses the data poisoning problem under the model security problem in federated learning. 
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This paper addresses the issue of data poisoning during the training phase of the federated learning model and employs a 

pruning optimization algorithm2 to identify outlier data points. 

Specifically, before the initialization of federated learning, each client needs to conduct data statistics on the local data. 

When new data points are added and existing data changes, the pruning optimization algorithm is used to determine 

whether to retain the newly added data and the changed data. The final experimental results indicate that as the discrepancy 

between abnormal and normal sample increases, the pruning optimization algorithm can remove it more, which makes the 

impact on federated learning smaller3. 

2. RELATED WORK

In federal learning, each participant is an independent individual, and the central server lack the capability to verify whether 

a participant is data is normal or anomalous. As a result, if the attacker poisons the data or the model from within the 

federal learning, only using a small number of toxic samples, there will be more than 90% of the attack success rate, and 

hidden dangers can be buried in the generated model. The training values of model parameters are guided to the desired 

results, which reduces the sample accuracy and performance of model prediction. Data poisoning refers to the act of 

attackers contaminating the training dataset by introducing incorrect labels or biased data, thereby degrading the quality of 

data. This, in turn, compromises the final trained model, undermining its availability or integrity. Jiang et al.4 proposed an 

attack method where in the attacker manipulates the parameter values of the learning model to align with their desired values 

while simultaneously causing the model to produce incorrect predictions for certain test samples. Chen et al.5 adopted the 

hybrid auxiliary injection strategy, and a more than 90% attack success rate was achieved by injecting toxic samples into the 

training set. Nelson et al.6, according to the optimization gradient produced by the support vector machine algorithm, 

predicted the direction of its objective function, and used the gradient ascent strategy to significantly improve the 

misclassification rate of SVM classifier. To enhance the scope of attacks, Biggio et al.7 proposed a novel poisoning algorithm 

grounded in the concept of anti-gradient optimization. This approach is capable of targeting the gradient-based training 

processes across a broader spectrum of learning algorithms, including neural networks and deep learning architectures. 

As adversarial attack and defense in machine learning becomes a hot topic, a large number of researches on adversarial 

attack and defense appear8 It was first discovered in 2014 that by introducing calculated perturbations into the original 

image, a classifier that initially correctly classify the image could be induced to misclassify the perturbed image, even 

though the magnitude of the perturbation was imperceptible to the human eye9. In 2014, Goodfellow et al.10 proposed the 

concept of adversative samples. Pang et al.11 proposed understanding black-box predictions via influence functions. 

Adversative sample is formed by consciously adding subtle interference to the data set, whose existence will cause the 

model to wrongly give predictions with high confidence. For example, putting a special pair of glasses on a real person 

can be misidentified by facial recognition system as another person. Add some graffiti to a stop sign and it will be misread 

as a speed limit sign by traffic sign recognition systems. If these attack methods are used to interfere with automatic driving, 

face recognition and other applications, the consequences will be unimaginable.  

3. PRUNING OPTIMIZATION ALGORITHM

A clean training dataset D* with n labeled instances < X*, y* >, where y*∈ℝ. The dataset was subsequently corrupted in two 

ways: the eigenvectors were added with noise, and the adversary added 𝑛1 malicious instances (eigenvectors and labels)

to mislead learning. Therefore, α =
𝑛1

𝑛+𝑛1
. γ =

𝑛1

𝑛
 is defined as the corruption rate, that is, the ratio of corrupted to clean 

data. Now assuming the opponent knows everything about the learning algorithm. The purpose of the learner is to learn a 

model that is similar to the real model on corrupted data sets. Assuming that X* of basis B is low-rank, the real model is 

an associated low-dimensional linear regression.  

Formally, the observed training data are produced as follows. 

(1) True value: 𝑦∗ = 𝛸∗𝑤∗ = 𝑈𝑤𝑈
∗ , where 𝑤∗ is the weight vector of the real model, 𝑤𝑈

∗  represents its low-dimensional

form, while 𝑈 = 𝛸∗𝐵 denotes the low-dimensional embedding of 𝛸∗.

(2) Noise: 𝛸0 = 𝛸∗ + 𝑁 , where N is the noise matrix of ‖𝛮‖∞ ≤ 𝜀  ; 𝑦0 = 𝑦∗ + 𝑒 , where e is Gaussian noise that is

independently and identically distributed, with a mean of zero and a variance of 𝛿.

(3) Damage: In order to obtain < 𝛸, 𝑦 > , the attacker adds 𝑛1 data points {𝑥𝑎 , 𝑦𝑎} of the adversarial design to design the

prediction performance of low- low-dimensional linear regression to the greatest extent.
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Li et al. proposed a pruning regression algorithm. In order to predict y = 𝛸∗𝑤 + 𝑒, we assume that 𝑤𝑈 = 𝐵𝑤. Because of

𝑋∗ = 𝑈∗𝐵, the prediction problem of 𝑤 in the high-dimensional space is transformed into the prediction problem of 𝑤𝑈 in

the low-dimensional space, so 𝑦∗ = 𝑈𝑤𝑈 + 𝑒. After getting the predicted value 𝑤𝑈
^ , you can convert it back to get 𝑤𝑈

^ =
𝐵𝑤𝑈

^ . It is important to observe that this closely resembles traditional principal component regression. However, in order 

to trick the learner into generating a wrong prediction of 𝑤𝑈
^  , and then a wrong prediction of 𝑤^, the opponent may destroy

the 𝑛1 rows in U. Pruning regression Algorithms 1 and 2 solve this problem.

Algorithm 1. Robust principal component regression 

input data set D 

𝑩 = findBasis(𝐷) 

𝑤 = learnLinearRegression(𝐷, 𝑩) 

Algorithm 2. Pruned principal component regression 

input: X, B, y 

(1) project X to the space formed by B to get U←X𝑩T

(2) Get 𝑤𝑈
^  by solving the following minimization problem

𝑚𝑖𝑛
𝑤𝑈

∑{

𝑛

𝑗=1

(𝑦𝑖 − 𝑢𝑖𝑤𝑈)2, 𝑖 = 1, … , 𝑛 + 𝑛1}

where z(j) denotes the j-th smallest element in the ordered sequence 

(3) return 𝑤^←B 𝑤𝑈
^

From an intuitive perspective, the first 𝑛1 instances reflecting the disparity between the largest observed response 𝑦𝑖  and

the predicted response 𝑢𝑖𝑤U are subtracted from the training. Here, 𝑢𝑖 represents the i-th row of matrix U. Given that the

variance of these differences is minimal (the variance of random noise 𝑦 − 𝑥𝑤∗  is 𝛿), it is more probable that these

instances with the largest differences are adversarial in nature. 

4. PRUNING OPTIMIZED FEDERATED LEARNING ALGORITHM

The algorithm used for federated learning in this study is referenced from References12,13. FedAvg is atypical algorithm of 

the traditional federated learning optimization model. Many federated optimization algorithms and privacy protection 

methods for federated learning are developed based on FedAvg. Such as FedProx algorithm proposed by Li et al.14, 

FEDDUALAVG algorithm proposed by Yuan et al.15, and so on. Within the FedAvg algorithm, each participant uses the 

Stochastic Gradient Descent (SGD) algorithm for local training, with identical learning rates η and the same number of 

local iterations E across all participants. After each participant has performed E local iteration training, a parameter average 

aggregation calculation is performed as the initial parameter of the next local iteration training. 

To enhance the robustness of federated learning, we implement Algorithms 1 and 2 on the clients involved in the federated 

learning process, as shown in Figure 2. 

In order to delete the abnormal or malicious data of the participants, we need to perform a pruning optimization operation 

before each global iteration of the client in the FedAvg algorithm, and then clear the abnormal client training sample data, 

as shown in Algorithm 3. 
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Figure 2. Federal learning process. 

Algorithm 3. Federated learning FedAvg algorithm based on pruning optimization 

Server: 

(1) input: number of participants K, learning rate 𝜂 , iteration round T, local iteration number E, model initialization 

parameter 𝑤0 , total number of participants N, participant’s influence on the model 𝑝𝑘 , participant number k = 1, ..., N; 

(2) for each iteration t (t = 1, ..., T);  

(3) the server randomly selects K of the N participants and sends 𝑤𝑡−1 to the client k; 

Client: 

(4) perform Algorithm 1 robust principal component regression, Algorithm 2 pruned principal component regression; 

(5) receive the model parameter 𝑤𝑡−1 sent by the server, the number of local iterations E, and the learning rate 𝜂; 

(6) according to the learning rate 𝜂 , use the SGD algorithm to perform iterative training E times, and calculate the new 

model parameter 𝑤𝑘
(𝑡)

 and send it to the server; 

Server: 

(7) receive model parameters from the client for aggregation operation 𝑤(𝑡) = ∑ 𝑝𝑘
𝐾
𝑘=1 𝑤𝑘

(𝑡−1)
; 

(8) judge whether 𝑤(𝑡) meets the termination condition, if not, proceed to the next cycle; 

(9) output w. 

5. EXPERIMENT 

5.1 Experimental setup 

We conduct experimental evaluations on the FedAvg algorithm based on pruning optimized federated learning and real-

world federated data sets. To facilitate a more in-depth analysis of the impact of data poisoning on federated learning, 

varying levels of data noise variance 𝛿  are applied across different devices. 

Synthetic data: In order to generate synthetic data, we adopted the same approach as Shamir et al.16 and Lin et al.17. In 

particular, for device k, we generated a sample (𝑋𝑘 , 𝑌𝑘) according to model 𝑦 = argmax(softmax(𝑊𝑥 + 𝑏)), 𝑥 ∈ ℝ60 , 

𝑊 ∈ ℝ10×60, 𝑏 ∈ ℝ10. In the model we created, 𝑊𝑘 − 𝑁(𝑢𝑘 , 1), 𝑢𝑘 − 𝑁(0, 𝜕), 𝑥𝑘 − 𝑁(𝑣𝑘 , ∑), the diagonal elements of 

the covariance matrix ∑ are all 𝑗−1.2. Each element of the average vector 𝑣𝑘 comes from 𝑁(𝐵𝑘 , 1), where 𝐵𝑘 ∈ 𝑁(0, 𝛽). 

Among them, 𝜕 is used to control the models of different devices, and 𝛽 is used to control the differences in data samples 

of different devices. 

Real data: We also used real data, as shown in Table 1. These data sets are frequently used in the research field of federated 

learning. We studied convex classification on MNIST. In order to add disturbances to the data, we are selecting several 

devices and adding some disturbances. The added disturbances are denoted by 𝛿. We then conducted experiments on 

FEMNIST with 62 categories, and also selected equipment to add noise during the experiment.  
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Table 1. Real federal datasets. 

Datasets Equipment Sample 

MINIST 1,000 69035 

FEMNIST 200 18345 

We conduct experiments on the FedAvg algorithm based on pruning optimized federated learning. We record the size of 

the noise added and whether the pruning optimization algorithm is added to the client to affect the FedAvg algorithm. 

5.2 Experimental results and analysis 

To compare the accuracy, 10% of the devices are selected to add the noise of 𝛿=0.2, and compare the accuracy changes of 

no noise added, noise added, and noise added and the client running pruning optimization algorithm locally. As shown in 

Figure 3, Figure 3(a) and Figure 3(b) respectively depict the accuracy of the models trained on the MNIST and FEMNIST 

datasets. It is evident that as the number of global iterations increases, the impact of clients adding noise on the final model 

becomes more significant. In the experiment on the MNIST data set, the model accuracy will eventually be reduced to 

39% without noise, and when the client performs the pruning optimization algorithm to remove some data noise, the final 

model accuracy will only lose about 1%; In the experiment on the FEMNIST data set, the client that adds noise has a great 

influence on the final model, and the final model accuracy is 50% of that without noise. When the client performs the 

pruning optimization algorithm to remove some noisy data, the model is accuracy is only reduced by 2% compared to the 

model trained without noise. The experimental results in Figure 4 show that when the data-poisoned client runs the pruning 

optimization algorithm, the local poisoning samples of the participating parties in the federated learning will be cleaned 

up, which greatly guarantees the accuracy of the federated learning model. 

  

(a) (b) 

Figure 3. Accuracy test on the MNIST and FEMNIST datasets of noise variance 𝛿 =0.2. 

  

(a) (b) 

Figure 4. The effect of adding noise on model accuracy. 
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Considering the impact of the newly introduced toxic sample on the original dataset, the noise variance 𝛿 is utilized in the 

experiment to quantify the value discrepancy between the toxic sample and the original sample. We consider the impact 

of the value of 𝛿 on the accuracy of the model and still choose 10% of the federal learning participants’ equipment for data 

poisoning. Figure 4 is a statistical graph of the experimental results done on the MNIST and FEMNIST data sets. From 

Figures 4a and 4b, it can be reflected that as the interference of the poisoned sample on the sample increases, the accuracy 

of the model shows a downward trend. When the data-poisoned client executes the pruning optimization algorithm, the 

accuracy of the model changes little and remains basically stable. 

6. CONCLUSION

Based on the basic application scenarios and potential problems of federated learning, this paper specifically analyzes the 

methods to deal with the data poisoning problems encountered in the actual application of federated learning. Based on 

the traditional centralized machine learning data poisoning defense measures, this paper proposes a method of applying 

the pruning optimization algorithm to the FedAvg algorithm to prevent data poisoning in federated learning. This method 

is mainly used to remove abnormal sample points in federated learning so that federated learning can train the model on a 

clean data set. The experimental results indicate that when the noise is pronounced, the pruning optimization algorithm 

can quickly clean up the abnormal data so that the final model will not have too much influence on the prediction accuracy. 

However, the risks and challenges faced in the actual application field are often more complicated. If a user participating 

in federated learning knows the details of the model, he may design a class of samples with minimal noise based on the 

characteristics of the model. It is difficult to be detected by the pruning optimization algorithm, but it has a great destructive 

effect on federated learning. The poisoning designed by malicious users for the detailed information of the model is one 

of the challenges in future federated learning. 

ACKNOWLEDGEMENT 

This paper was supported by the project No.: JS202011. 

REFERENCES 

[1] Li, M., Wang, W. and Zhou, Z. H., “Exploiting remote learners in Internet environment with agents,” Science in 
China Series F: Information Sciences, 53(1), 64-76 (2010).

[2] Steinhardt, J., Koh, P. W. and Liang, P., “Certified defenses for data poisoning attacks,” Proceedings of the 31st 
International Conference on Neural Information Processing Systems, 3520-3532 (2017).

[3] Yang, A., Ma, Z., Zhang, C., et al., “Review on application progress of federated learning model and security 
hazard protection,” Digital Communications and Networks, 9(1), 146-158 (2023).

[4] Jiang, W., Li, H., Liu, S., et al., “A flexible poisoning attack against machine learning,” ICC 2019-2019 IEEE 
International Conference on Communications (ICC), 1-6 (2019).

[5] Chen, X., Liu, C., Li, B., et al., “Targeted backdoor attacks on deep learning systems using data poisoning,” arXiv 
preprint arXiv: 1712.05526, (2017).

[6] Biggio, B., Nelson, B. and Laskov, P., “Poisoning attacks against support vector machines,” arXiv preprint arXiv: 
1206.6389, (2012).

[7] Muñoz-González, L., Biggio, B., et al., “Towards poisoning of deep learning algorithms with back-gradient 
optimization,” Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 27-38 (2017).

[8] Szegedy, C., Zaremba, W., Sutskever, I., et al., “Intriguing properties of neural networks,” arXiv preprint arXiv: 
1312.6199, (2013).

[9] Wang, Z., Toussaint, P. J., Evans, A., et al., “Exploring the brain characteristics of structure-informed functional 
connectivity through graph attention network,” bioRxiv, (2023).

[10]  Goodfellow, I. J., Shlens, J. and Szegedy, C., “Explaining and harnessing adversarial examples,” arXiv preprint 
arXiv: 1412.6572, (2014).

[11]  Koh, P. W. and Liang, P., “Understanding black-box predictions via influence functions,” International 
Conference on Machine Learning, 1885-1894 (2017).

[12]  Konečný, J., “Stochastic, distributed and federated optimization for machine learning,” arXiv preprint arXiv:

1707.01155, (2017). 

Proc. of SPIE Vol. 13395  133952G-6



[13] Li, D., Guo, Y., Liu, D., et al., “Client-edge-cloud hierarchical federated learning based on generative adversarial

networks,” 2023 IEEE International Conference on Knowledge Graph (ICKG), 160-167 (2023).

[14] Li, T., Sahu, A. K., Zaheer, M., et al., “Federated optimization in heterogeneous networks,” arXiv preprint arXiv:

1812.06127, (2018).

[15] Yuan, H., Zaheer, M. and Reddi, S., “Federated composite optimization,” International Conference on Machine

Learning, 12253-12266 (2021).

[16] Shamir, O., Srebro, N. and Zhang, T., “Communication-efficient distributed optimization using an approximate

newton-type method,” International Conference on Machine Learning, 1000-1008 (2014).

[17] Lin, S., Yang, G. and Zhang J., “A collaborative learning framework via federated meta-learning,” 2020 IEEE

40th International Conference on Distributed Computing Systems (ICDCS), 289-299 (2020).

Proc. of SPIE Vol. 13395  133952G-7


