
 

Graph convolution-based feature disentanglement for visible-infrared 

person re-identification 

Ren Loua, Muyu Wang*b, Yihao Shenb, Sanyuan Zhaob, Xinyuan Wanga, Yueqi Zhoua, Fangfang 

Lic, Qiangqiang Xianga 

aZhejiang Scientific Research Institute of Transport, Hangzhou, Zhejiang, China; bSchool of 

Computer Science, Beijing Institute of Technology, Beijing, China; cEnterprise Institute of Zhejiang 

Communications Investment Expressway Operation Management Co., Ltd, Hangzhou, Zhejiang, 

China 

ABSTRACT 

We propose a graph convolution-based disentanglement algorithm that is well-performed in the task of cross-modal person 

re-identification between visible and infrared images. Given the image of an individual in one modality, the problem to be 

addressed is whether the same person also appears in images from another modality. To tackle this issue, the main idea of 

our proposed method is to disentangle image features into modality-related and modality-invariant features, thereby 

alleviating feature discrepancies across different modal images. Unlike traditional disentanglement methods, our proposed 

graph convolution-based approach abandons the use of generative adversarial networks and employs attention mechanisms 

for initial disentanglement, followed by optimization of disentangled features using graph convolution. Comprehensive 

experimental results on the RegDB dataset and SYSU MM01 dataset demonstrate the superiority of our method in terms 

of effectiveness and efficiency. 
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1. INTRODUCTION 

The objective of the visual-infrared cross-modal pedestrian re-identification task is to match pedestrians appearing in both 

modalities: RGB images captured by visible light cameras and infrared images captured by infrared cameras. In the task 

of visual-infrared cross-modal pedestrian re-identification, there exist not only modal intra-variations similar to traditional 

single-modal pedestrian re-identification tasks, such as issues related to low resolution, changes in viewpoint, and 

occlusion, but also more intricate cross-modal differences. The latter arises due to the inherent disparities between the 

reflectance in the visible spectrum and the emissivity in the thermal spectrum. The intertwining of modality-specific 

differential information, such as lighting and texture, with modality-agnostic differential information, such as posture and 

shape, poses significant challenges to pedestrian re-identification tasks. 

Recent studies have explored the use of image-level constraints to disentangle inter-modal and intra-modal differences. 

Popular disentanglement methods employ generative adversarial networks to transform images from one modality to 

another, thereby eliminating modality differences. However, the process of transforming between two modalities with 

GAN is complex, demanding extensive experimentation to determine suitable parameters and substantial computational 

resources. Moreover, disentanglement methods relying on Generative Adversarial Networks (GANs) often yield poor 

results when the quality of the training datasets cannot be guaranteed to be high. 

To address the aforementioned drawbacks of previous disentanglement methods, we propose a novel network architecture 

based on graph convolution for inter-modal and intra-modal feature disentanglement as shown in Figure 1. We discard the 

generator and discriminator structures typically employed in previous disentanglement approaches and directly utilize a 

single end-to-end network for disentanglement. We apply instance normalization to acquire fundamental modality-

independent features. Subsequently, attention mechanisms are employed to combine the original features with features 

obtained through instance normalization for a coarse disentanglement. Afterward, graph convolution is applied to the 

coarse disentangled modality-specific and modality-agnostic features for further disentanglement. Our method is a feature-

based disentanglement rather than image-based disentanglement like previous GAN-based methods, thus to a certain extent 
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addressing issues caused by poor image quality and limited samples in datasets. 

 

Figure 1. Network structure. 

A two-stream network takes RGB images and infrared images as inputs and extracts the entangled features. The features 

are roughly disentangled in the Modality Salience Disentanglement, and then the Graph Modality Disentanglement is used 

for further refinement. 

The main contributions of our work are summarized as follows:  

• We propose a novel disentanglement method that is well performed in the task of cross-modal person reidentification. 

In comparison to previous disentanglement methods, the proposed method has a simpler network structure and a more 

efficient training process. 

• To the best of our knowledge, the proposed graph-based disentanglement method is the first work to use graph 

convolution for feature disentanglement.  

• Extensive experimental results demonstrate that the proposed method achieves or surpasses the state-of-the-art 

approaches. 

2. APPROACH 

2.1 Problem definition and network structure 

2.2.1 Problem definition. For the visible image  and the infrared image , each corresponds 

to an identity label l ∈ {1, 2, . . . , N}, where N  is the number of pedestrians. During the training phase, we train a dual-

stream input feature extraction network ( )·  on a cross-modal image dataset. During the testing phase, given a query 

image from one modality, we calculate the features of all images in the query set from the other modality. We then compute 

the Euclidean distances for the corresponding features and use these distances as the sorting key. After passing through 

the feature extraction network ( )· , we obtain an output feature denoted as .  can be regarded as a combination of 

two distinct features entangled together: one representing the modality-independent feature  and the other representing 

the modality-specific feature . Modality-independent features encompass information such as the form and posture of 

individuals in the image, which is independent of the imaging modality. Modality-specific features, on the other hand, 

arise due to the different imaging principles of the two modalities 

2.2.2 Network structure. The network we proposed is designed to disentangle modality-independent features from 

modality-specific features, ensuring that the process of pedestrian re-identification is not influenced by modality 

differences. As shown in Figure 1, the first part is the dual-stream feature extraction network to extract entangled features. 

The second part is the Modality Salience Disentanglement, which disentangles the features extracted and outputs coarse 

modality-specific features and modality-independent features. The third part is Graph Convolution Disentanglement, 

which is used for further fine disentanglement. For modality-independent features (orbiculars), as shown in Figure 1, 

graphs are established that are relevant to identity categories (white) and modality-agnostic aspects (black) for fine-tuning 

features. For modality-specific features (triangles), graphs are established that are relevant to modality aspects (white) and 

independent of identity categories (black) for feature fine-tuning. Additionally, to facilitate information propagation and 

aggregation, connections are established between modality-specific and modality-agnostic features through graphs. 
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2.2 Modality salience disentanglement 

The Modality Salience Disentanglement module is the first step in modality disentanglement and is dedicated to separating 

the features extracted by the dual-stream network into modality-agnostic features and modality-specific features. The 

architecture of the Modality Salience Disentanglement is shown in Figure 2. Due to the significant advantages of instance 

normalization in cross-modal applications and reducing sample diversity, we first apply instance normalization to the 

features X extracted by the dual-stream network and achieve the normalized feature X’: 

 𝑋𝑘
′ =

𝑋𝑘−𝐸[𝑋𝑘]

√𝑉𝑎𝑟[𝑍𝑘]+𝜀
 (1) 

where 
 

denotes the -th dimension of the corresponding feature. The addition of 𝜀 is to avoid division by 0, and the 

mean 𝐸[·] and standard deviation 𝑉𝑎𝑟[·] need to be calculated dimension-wise. Next, we extract channel-wise attention 

information. We apply average pooling and max pooling to reduce the dimension of , obtaining two distinct low-

dimensional features, denoted as 𝑥1 and 𝑥2, respectively. Then, a multi-layer perceptron (MLP) is employed to fuse these 

features obtained from the two pooling methods, resulting in channel attention : 

 𝑥1 = 𝑎𝑣𝑔𝑝𝑜𝑜𝑙(𝑋), 𝑥2 = 𝑚𝑎𝑥 𝑝 𝑜𝑜𝑙(𝑋) (2) 

 𝑎 = 𝜎(𝑊2(𝛿(𝑊11𝑥1) + 𝛿(𝑊12𝑥2))) (3) 

where 𝜎 represents the sigmoid activation function and 𝛿 represents the ReLU activation function, W
 
is weights in MLP. 

We remove the residual module 
'X  in X  to obtain an intermediate feature , i.e. 𝑅 = 𝑋 − 𝑋′. In this way, we 

achieve the modality-independent feature X +  as: 

 
' '(1 )X X a R a X a X+ = +  =  + − 

 
(4)

 

Similarly, the modality-specific feature X −
 is: 

 
' '(1 ) (1 )X X a R a X a X− = + −  =  + − 

 (5) 

With an average pooling, we obtain the output modality-independent feature p
x  and modality-related feature m

x : 

 
( ), ( )

p m
x avgpool X x avgpool X+ −= =

          
(6)

 

In the Modality Salience Disentanglement, we employ identity loss Lid and triplet loss Ltri for supervision. 

Fundamentally, the mechanism applied is a self-attention mechanism, lacking a reliable supervised method for effective 

feature dis-entanglement. Therefore, in the subsequent Graph Convolution Disentanglement module, the disentanglement 

is further optimized. 

 

Figure 2. Diagram of the modality saliency disentanglement. 

2.3 Graph convolution disentanglement  

During training, we sample P identity categories. For each identity category K visible images and K infrared images are 

randomly selected, and there will be a total of 2PK  images. After the modality salience disentanglement, we obtain the 

modality-specific feature 
2PK C

p
x  and the modality-agnostic features 

2

m

PK Cx  . Considering feature p
x

 
and m

x  

as vertices, there will be 4PK  vertices. Vertices are divided into two classes based on modality specificity, denoted as 

V +
 and V −

: 
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We construct a graph with these vertices. The edges ij
E  between V +

 and V −
 in the graph can be classified into three 

categories: modality-independent edges 
ij

E+
 (both vertices at the ends are modality-independent vertices); modality-

specific edges 
ij

E−
 (both vertices at the ends are modality-specific vertices); and disentanglement edges 

ij

DE  (connecting 

a modality-specific vertex and a modality-agnostic vertex). 

The graph convolution disentanglement part shown on the right side of Figure 1 visually illustrates the various connections 

between vertices and edges. Different shapes represent different identity categories, and different colors represent vertices 

from different modalities. Taking the graph in Figure 1 as an example, there are two identities, i.e. P=2 and for each 

identity, K=2 images for both modalities are selected. For each identity, the upper four (two black and two white) vertices 

are modality-independent vertices and the four vertices at the bottom are modality-specific vertices. The corresponding 

modality-specific and modality-independent vertices are connected vertically. In the upper part, vertices with the same 

shape (i.e., from the same identity category) are connected, while in the lower part, vertices with the same color (i.e., from 

the same modality) are connected. 

We use Graph Attention Networks (GAT) for graph convolution. The graph convolution network is denoted as ( ) , in 

this way the convolved feature ( ) ( ), ,g g

p m
x x x x= . When performing node classification, for p

gx  vertices, 

classification can be directly done based on the identity category. For m

gx  vertices, they can be divided into two classes: 

visible background class and infrared background class. In this stage, since the number of samples in the visible background 

class and infrared background classes is much larger than the number of samples in the identity categories, the focal loss 

is used to calculate the loss function: 

  
(8)

 

where a adjusts the balance between positive and negative samples, and   adjusts the weight between easy and hard 

samples. SP represents the positive samples and Sn represents the negative samples. 

3. EXPERIMENTS 

3.1 Datasets and metrics 

In the visual-infrared pedestrian re-identification task, commonly used public datasets include SYSU-MM011 and RegDB2 

datasets. The images in the SYSU-MM01 dataset are collected by 4 visible cameras and 2 infrared cameras on the campus 

of Sun Yat-sen University. These cameras capture both indoor and outdoor scenes. The training set of SYSU-MM01 

contains 22,258 visible images and 11,909 infrared images, featuring 395 pedestrians. The test set includes 96 individuals. 

The RegDB dataset consists of images captured by one visible camera and one infrared camera. The dataset includes 

images of 412 pedestrians, with each individual having 10 visible and 10 infrared images. statistically stable results and 

the average is recorded. 

For the RegDB dataset, we conduct experiments under two settings: the experiments, where known infrared modality 

images are used to search for visible modality images, are referred to as experiments under the infrared-visual setting; the 

experiments where known visible modality images are used to search for infrared modality images are referred to as 

experiments under the visual-infrared setting. For the SYSU-MM01 dataset, we conduct experiments under a global-

single-shot setting, which means performing pedestrian recognition with a given picture of arbitrary modality. 

To evaluate the performance of the pedestrian re-identification system, we use metrics including Cumulative Matching 

Characteristics (CMC) and Mean Average Precision (mAP), as well as the newly proposed evaluation method Mean 

Inverse Negative Penalty (mINP). 
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3.2 Experiment settings 

In the preprocessing stage of the images, all images are first resized to the resolution of 288×144. The backbone network, 

ResNet-50, is pre-trained on the ImageNet dataset, and the stride of the last residual block is changed from 2 to 1. For data 

augmentation, horizontal flipping and random erasing are applied during preprocessing. In the RegDB dataset, is set to 8, 

K is set to 4, and each batch contains 64 images. In the SYSU MM01 dataset, P is set to 6, K is set to 8, and each batch 

contains 96 images. We use an SGD optimizer with a momentum parameter set to 0.9, and the initial learning rate is set to 

0.1. A warm-up learning strategy is applied during the training process 

3.3 Ablation study 

To demonstrate the effectiveness of each module of our method, we conduct ablation experiments on the RegDB dataset. 

Firstly, we introduce the baseline network of the disentanglement network. The baseline network, as well as the feature 

extraction network of the proposed disentanglement network, is based on the ResNet50 architecture. In the disentanglement 

part, we use a naive channel attention technique for feature disentanglement. We let X be the features extracted by the 

dual-stream network, and the learned channel attention be  . The disentanglement of features is calculated as follows: 

 

, (1 )
p m

X a X X a X=  = − 
 

(9)
 

The same loss function as the modality salience disentanglement module is used. The first experiment of the ablation study 

is set to use only the baseline network (baseline), the second experiment is set to use the modality salience disentanglement 

without the graph convolution disentanglement module (w/MSD), and the third experiment is set to include all the proposed 

modules in this paper (total). The results of the ablation experiments under the setting of visual-infrared and infrared-visual 

are respectively shown in Tables 1 and 2. 

Table 1. Results of the ablation experiments under the visual-infrared setting on the RegDB dataset. 

Methods r=1 r=10 r=20 mAP mINP 

Baseline 88.47 95.81 97.50 86.36 79.50 

w/MSD 89.49 96.22 97.83 87.67 81.57 

Total 90.64 96.79 98.21 88.41 81.91 

Table 2. Results of the full ablation experiments under the infrared-visual setting on the RegDB dataset 

Methods r=1 r=10 r=20 mAP mINP 

Baseline 88.56 95.67 97.45 86.50 79.50 

w/ MSD 89.26 95.68 97.33 86.92 79.68 

Total 89.69 96.67 98.32 87.86 81.09 

The experimental results on the RegDB dataset show that compared to the baseline method, the Modality Salience 

Disentanglement and Graph Convolution Disentanglement we proposed both improve the results of the cross-modal 

pedestrian re-identification task in the two experimental settings. Here, we present retrieval results under different settings 

of our method. Figure 3 shows the retrieval results under the infrared-visual setting. Figure 4 illustrates the retrieval results 

under the visual-infrared setting. In these figures, the first column shows the images to be queried, and the other columns 

show the correct query results. The green rectangles display the correct retrieval results, while the red rectangles show the 

incorrect ones. 

Proc. of SPIE Vol. 13395  1339543-5



 

  

Figure 3. Retrieval result illustrations for infrared-visible setting. Figure 4. Retrieval result illustrations for visible-infrared setting. 

3.4 Comparison with other methods 

We compare our method with the state-of-the-art methods on the RegDB dataset and SYSU MM01 dataset. The 

experimental results on the RegDB dataset of w are presented in Tables 3 and 4. The experiments on the SYSU MM01 

dataset under the Golbal-Single-Shot experimental condition are shown in Table 5. 

Experiments on the RegDB dataset (Tables 3 and 4) demonstrate that our method achieves the best performance in both 

query settings. For the visual-infrared query setting, our method achieves a performance of CMC (rank1)/mAP/mINP at 

90.64\%/88.41\%/81.91\%. For the infrared-visual query setting, it achieves CMC (rank1)/mAP/mINP at 

89.69\%/87.86\%/81.09\%. These results prove that our method effectively extracts modality-independent features from 

visible and infrared images, avoiding interference from different modalities in feature extraction. Through the graph 

convolution disentanglement module, it extracts features related to identity categories, significantly improving the 

performance of visual-infrared cross-modal pedestrian re-identification tasks. 

Table 3. Comparisons of our method with state-of-the-art techniques under the visual-infrared setting on the RegDB dataset. 

Methods r=1 r=10 r=20 mAP mINP 

MAC3 36.43 62.36 71.63 37.03 - 

AliGAN4 57.90 - - 53.60 - 

eBDTR5 34.62 58.96 68.72 33.46 - 

EDFL6 52.58 72.10 81.47 52.98 - 

expAT7 66.48 - - 67.31 - 

MPMN8 86.56 96.68 98.28 82.91 - 

CMAlign9 74.17 - - 67.64 - 

NFS10 80.54 91.96 95.07 72.10 - 

MPANet11 82.8 - - 80.7 - 

Variational distillation12 73.2 - - 71.6 - 

Ours (global feature) 90.64 96.79 98.21 88.41 81.91 

Table 4. Comparisons of our method with state-of-the-art techniques under the infrared-visual setting on the RegDB dataset. 

Methods r=1 r=10 r=20 mAP mINP 

MAC3 36.20 61.68 70.99 39.23 - 

AliGAN4 56.30 - - 53.40 - 

eBDTR5 34.21 58.74 68.64 32.49 - 
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Methods r=1 r=10 r=20 mAP mINP 

EDFL6 51.89 72.09 81.04 52.13 - 

expAT7 67.45 - - 66.51 - 

MPMN8 84.62 95.51 97.33 79.49 - 

CMAlign9 72.43 - - 65.46 - 

NFS10 77.95 90.45 93.62 69.79 - 

MPANet11 83.7 - - 80.9 - 

Variational distillation12 71.8 - - 70.1 - 

Ours (global feature) 89.69 96.67 98.32 87.86 81.09 

On the SYSU-MM01 dataset, our experimental results are shown in Table 5. Compared to current SOTA methods, our 

method outperforms most other methods and achieves similar performance and achieves CMC(rank1)/mAP/mINP at 

60.98\%/57.81\%/43.65\%, proving the superiority of graph convolutional-based method for disentanglement. It's worth 

noting that, compared to GAN-based disentanglement methods, our proposed disentanglement method does not use 

generative adversarial networks for generating fake images, greatly reducing the complexity of the network and the 

difficulty of the training process. Comparative results also demonstrate that disentanglement in the feature space is more 

efficient and effective than disentanglement at the image scale. 

Table 5. Comparisons of our method with state-of-the-art techniques on the SYSU-MM01 dataset. 

Methods r=1 r=10 r=20 mAP mINP 

HOG21 2.76 18.30 31.90 4.24 - 

AliGAN4 42.40 85.00 93.70 40.70 - 

eBDTR5 27.82 67.34 81.34 28.42 - 

EDFL6 36.94 85.42 93.22 40.77 - 

expAT7 38.57 76.64 86.39 38.61 - 

XIV13 49.92 89.79 95.96 50.73 - 

MSR14 37.35 83.40 93.34 38.11 - 

JSIA15 38.10 80.70 89.90 36.90 - 

CMSP16 43.56 86.25 - 44.98 - 

Attri17 47.14 87.93 94.45 47.08 - 

HAT18 55.29 92.14 97.36 53.89 - 

HC19 56.96 91.50 96.82 54.95 - 

Hi-CMD20 34.94 77.58 - 35.94 - 

CMAlign9 55.41 - - 54.14 - 

NFS10 56.91 91.34 96.52 55.45 - 

MPANet11 70.58 96.21 98.80 68.24 - 

Variational distillation12 60.02 94.18 98.14 58.80 - 

Ours 60.98 91.38 96.19 57.81 43.65 
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4. CONCLUSION 

Deviating from the traditional network architecture involving Generative Adversarial Networks (GANs) in 

disentanglement networks, we propose a novel disentanglement network based on graph convolution. The proposed 

approach employs attention mechanisms for the preliminary disentanglement of modality-independent and modality-

dependent features. Subsequently, a new graph structure is designed to refine feature disentanglement through graph 

convolution. Compared to other disentanglement methods, the network of the proposed approach is simpler yet more 

effective. Extensive experimental results demonstrate that the proposed method achieves or surpasses the current state-of-

the-art methods. 
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