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ABSTRACT 

Accurate segmentation of insulators in power systems is crucial for localizing and detecting insulator defects, ensuring the 

safe and efficient transmission of electricity. However, current insulator segmentation models suffer from high 

misclassification rates and low segmentation accuracy when segmenting aerial insulator images. To address this issue and 

achieve precise segmentation of insulator images, we propose an Insulator image Segmentation with Mamba-based U-Net 

(ISMU-Net). Firstly, an enhanced feature extraction block, grounded in visual state modeling, is devised to replace the 

convolutional blocks of U-Net, enabling comprehensive extraction of insulator image information. Secondly, to mitigate 

information loss at skip connections and harness the underlying network information, we integrate the attention mechanism 

from SE-Net into the feature extraction block, optimizing feature fusion at skip connections. Experimental results on a 

collected dataset of aerial insulator images reveal that ISMU-Net achieves a Precision (Pre) of 92.7%, Recall (Rec) of 

91.7%, and F-Measure (F1) of 94.8%. Moreover, ISMU-Net demonstrates strong generalization capabilities across diverse 

backgrounds, thereby validating its effectiveness in enhancing the accuracy and robustness of insulator segmentation.  
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1. INTRODUCTION  

Insulators are an indispensable component of power systems, facilitating the transmission of high-voltage electricity to 

various terminal devices while ensuring the safe and stable operation of the entire system. However, due to their prolonged 

exposure to high-voltage electric forces, insulators are prone to various defects such as explosions, cracks, and fouling. 

The stable operation of power systems is threatened by significant safety hazards, arising from system failures that can be 

caused by these defects. Therefore, insulator detection has always been a crucial research direction in the field of power 

systems. 

The traditional approach to overhead power line inspection relies heavily on manual inspections. Given the vast number 

of high-voltage overhead lines located in remote, geographically complex areas, manual inspections are associated with 

high operational intensity and long inspection cycles. Additionally, the efficiency of manual inspections is significantly 

limited, and misdetections and missed detections are frequent due to factors such as the inspector’s experience and 

perspective. In view of these challenges, a revolution in inspection methods is imperative to make power line inspections 

more intelligent and convenient. With the rapid technological advancements in recent years, the maturing of drone aerial 

photography technology has presented itself as an excellent alternative to manual inspections. 

By capturing insulator images through aerial photography and further processing these images using computer-assisted 

algorithms, the status of the insulators can be accurately determined. Currently, transmission line insulator detection 

methods can be categorized into two types: conventional methodologies reliant on machine learning and advanced 

approaches utilizing deep learning1-3. Defect recognition can only be achieved under specific conditions when utilizing 

traditional machine learning methods, limiting their applicability in complex distribution lines, deep neural network-based 

methods ensure good adaptability but require significant amounts of training samples, which is contradictory to the scarcity 

of aerial images of distribution lines4-6. 

2. RELATED WORK 

Insulators, a crucial component in transmission systems, are prone to mechanical failures due to various environmental 

factors such as storms, earthquakes, and heavy rains, potentially leading to malfunctions in photovoltaic power stations. 
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Therefore, detecting mechanical faults in insulators has become an important aspect in advancing intelligent power 

inspection. 

2.1 Existing research 

In recent years, numerous studies have been conducted on the mechanical fault detection of insulators. Yu et al.7 addressed 

the limited availability of insulator samples by proposing a method that combines texture feature enhancement with the 

SINet network, achieving an accuracy of 99.82% in identifying insulator mechanical faults. Wei8 proposed utilizing Hough 

ellipse detection coupled with Canny edge detection to identify mechanical faults in composite insulators. Bakshi et al.9 

introduced an improved U-Net convolutional network with dilated convolutions and full-scale skip connections to enhance 

the accuracy and efficiency of insulator fault detection. Hao et al.10 presented a fault diagnosis method for insulators in 

aerial images, employing Otsu’s thresholding for segmentation and Hough transform for ellipse detection to detect missing 

strings based on insulator position information. Huang et al.11 tackled the issue of uneven illumination in natural 

environments by proposing an improved color difference-based image segmentation method that involves partitioning 

bright and dark regions, compensating for illumination variations, and utilizing an adaptive thresholding segmentation 

algorithm combined with geometric shape analysis. 

2.2 Challenges and proposed approach 

Despite the progress made using image processing techniques, existing insulator mechanical fault detection algorithms still 

face challenges in effectively identifying faults. While deep learning models demonstrate higher detection accuracy, they 

are limited by the small size of training datasets and poor model generalization. Traditional image processing algorithms, 

on the other hand, suffer from instability and sensitivity to uneven illumination. To address these issues, this paper proposes 

an improved insulator segmentation algorithm. Initially, brightness correction is applied to insulator images to normalize 

luminance under different lighting conditions, thereby enhancing the generalization of model training. Subsequently, an 

enhanced U-shaped architecture network with a visual state module and an improved attention mechanism is utilized for 

insulator segmentation. This approach facilitates the fusion of local and global features, further improving the accuracy of 

insulator segmentation and aiding in the localization and detection of defects. 

3. METHODS 

This section, the overall architecture of the proposed ISMU-Net is initially introduced. Subsequently, the details of the key 

component, the VSS block, are elaborated upon. Lastly, the loss functions utilized during the training process are explained. 

3.1 Architecture overview 

To better extract image features, the ISMU-Net model employs a symmetrical structure. In Figure 1, the ISMU-Net is 

structured with a block embedding layer, an encoder, a decoder, a final projection layer, and incorporates skip connections.  

 

Figure 1. The overall architecture of ISMU-Net. 
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The input image 𝑥 ∈ 𝑅𝐻×𝑊×3 is segmented into non-overlapping patches of size 4×4 by Patch Embedding, which then 

projects the image’s dimensionality to C, with C typically set to 96. This results in an embedded representation 𝑥′ ∈

𝑅
𝐻

4
×
𝑊

4
×3

. Prior to being fed into the encoder for feature extraction, x′ undergoes Layer Normalization12 for normalization. 

The encoder consists of four stages, and at the end of the first three stages, patch merging operations are applied to diminish 

the height and width of the input features while enhancing the number of channels. Each of the four stages employs [2, 2, 

2, 2] VSS blocks, where the number of channels progressively increases from [C, 2C, 4C, 8C]. 

The decoder is likewise structured with four stages, wherein the initial three stages commence with patch expansion 

operations to decrease the feature channels and augment the height and width. Across the four stages, [2, 2, 2, 1] VSS 

blocks are utilized, with the channel count progressively decreasing from [8C, 4C, 2C, C]. Subsequent to the decoder, a 

final projection layer is employed to match the feature size with the segmentation target. This entails four up-sampling 

operations through patch expansion to reestablish the height and width of the features, followed by a projection layer to 

restore the original channel count. 

The ISMU-Net model mitigates the bottleneck issue by incorporating two VSS blocks. Within both the encoder and 

decoder, skip connections are implemented in each layer to blend multi-scale features with up-sampled outcomes, thereby 

enriching spatial details through the integration of both shallow and deep features. A subsequent linear layer ensures 

dimensional consistency of the combined feature set with the up-sampled resolution. For skip connections, a 

straightforward addition operation is employed, eliminating the need for additional parameters. 

3.2 Visual state space block (VSS) 

As depicted in Figure 2, the VSS module, adapted from V-Mamaba13, constitutes a pivotal element of ISMU-Net. Initially, 

the input data undergoes layer normalization and is bifurcated into two paths. In the first path, the input traverses a linear 

layer and is subjected to an activation function. In the second path, the input sequentially traverses a linear layer, undergoes 

depth-wise separable convolution, and is activated, eventually reaching the 2D-Selective-Scan (SS2D) module for feature 

extraction. The extracted features are subsequently normalized via layer normalization and undergo an element-wise 

multiplication with the output of the first path to facilitate information fusion. The fused features are then blended through 

a linear layer and merged with a residual connection, culminating in the output of the VSS module. This work adopts 

SiLU14 as the default activation function to enhance the model’s performance. 

 

Figure 2. The detailed structure of the visual state space (VSS) block. 

The SS2D module is a meticulously crafted structure consisting of three key components: a scan expansion operation, S6 

blocks, and a scan merging operation. The scan expansion operation ingeniously decomposes the input image into 

sequences along four diverse directions, thereby comprehensively exposing the image’s information from all perspectives. 

Subsequently, these sequences undergo feature extraction via the S6 blocks. Derived from Mamba15, the S6 module 

incorporates the strengths of the S416 module and introduces an input-conditioned SSM parameter selection mechanism. 

This mechanism enables the S6 blocks to intelligently distinguish and preserve task-relevant information while filtering 

out irrelevant details, ensuring thorough scanning of each directional information and precise capture of various features 

in the image. Following the scan expansion, the scan merging operation effectively sums and integrates the generated 
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sequences, proficiently reconstructing the output image to match the dimensions of the input, thereby accomplishing both 

information integration and restoration. Through its unique components and efficient working mechanism, the SS2D 

module provides robust support for image processing tasks, demonstrating exceptional performance in feature extraction 

and processing. 

3.3 2D-selective-scan and squeeze excitation block (SS2D-SE) 

The integration of the selective scanning mechanism with the attention mechanism can effectively enhance the saliency of 

image features, addressing issues such as blurred lesion segmentation boundaries and difficult feature extraction in 

insulator images. Drawing on the pixel characteristics of aerial images and the distribution properties of insulator regions, 

this paper proposes an SS2D-SE module that guides the network to acquire feature regions spanning from shallow to deep 

constraints and from local to global scopes. 

To enhance feature saliency and extract clearer insulator boundary information, this paper introduces the SE module based 

on the SS2D module, as depicted in Figure 3. The 2D-Selective-Scan (SS2D) comprises three modules: S6 block, Scan 

Merging and Scan Expanding. The Scan Expanding module meticulously decomposes the image into sequences along both 

rows and columns, subsequently scanning in four diverse directions: from top-left to bottom-right, bottom-right to top-left, 

top-right to bottom-left, and bottom-left to top-right. This methodology ensures that every pixel incorporates information 

from all other pixels in various orientations. Subsequent to the S6 module’s processing, the Scan Merging module 

reconfigures each sequence into a unified image and combines all sequences into a novel sequence. The weights extracted 

by the SE module are weighted with the features processed by the SS2D module, as illustrated in Figure 3. 

 

Figure 3. Illustration of the 2D-selective-scan and squeeze excitation block on image. 

The amalgamation of S6 and CSM, designated as the S6 block, functions as the pivotal component in the construction of 

the Visual State Space (VSS) block, constituting the foundational unit of V-Mamba. The S6 block embodies the linear 

complexity inherent in the selective scanning mechanism while preserving a comprehensive global receptive field. The 

superimposition of the SE module on top of this aids in recalibrating channel feature responses and learning global 

information by suppressing ineffective features and emphasizing effective ones. Initially, a feature map with channel 

number, height, and width represented by C, H and W, is taken as input, as shown in equation (1): 

𝑢𝑐 = 𝑣𝑐 ∗ 𝑋 = ∑ 𝑣𝑐
𝑛 ∗ 𝑥𝑛𝐶′

𝑛=1                                                                (1) 

Herein, 𝑢𝑐 denotes the output of the (c)-th convolutional kernel, 𝑣𝑐 represents the (c)-th convolutional kernel itself, and 𝑥
𝑛 

signifies the (n)-th input covered by the current convolutional kernel. 

In this context, the notation  𝑢𝑐  signifies the output generated by the (c)-th convolutional kernel, 𝑣𝑐  represents the (c)-th 

convolutional kernel itself, and 𝑥
𝑛 denotes the (n)-th input that is encompassed by the current convolutional kernel. 

Additionally, for the purpose of condensing global spatial information into channel descriptors, we employ a global average 

pooling operation 𝐹𝑠𝑞  that transforms the feature map into a 1×1×C dimensional feature map 𝑍 = [𝑧1, 𝑧2, ⋯ , 𝑧𝑐]. The 

statistical information 𝑧𝑐 for the (c)-th channel is calculated as shown in equation (2):  

𝑧𝑐 = 𝐹𝑠𝑞(𝑢𝑐) =
1

𝐻⋅𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗)

𝑊
𝑖=1

𝐻
𝑖=1                                                           (2) 

As shown in equation (3), the excitation function is realized through the employment of a concatenation of fully connected 

(FC) layers, a Rectified Linear Unit (ReLU) activation, another FC layer, and a Sigmoid activation function. 

𝑅 = 𝐹𝑒𝑥(𝑍,𝑊) = 𝜎(𝑊2 ⋅ 𝛿(𝑊1 ⋅ 𝑍))                                                            (3) 
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In this context, 𝑅 = [𝑟1, 𝑟2, ⋯ , 𝑟𝑐] represents the learned activation values for each channel, where 𝑟𝑐  denotes the weight 

value for the (c)-th channel. The notation 𝐹𝑒𝑥 denotes the excitation operation, whereas δ stands for the Rectified Linear 

Unit (ReLU) activation function, and σ signifies the Sigmoid activation function. W stands for the weight parameters 

learned during the training process. 

Finally, the final output is obtained by scaling the channel weights, as follows: 

𝑥̃𝑐 = 𝐹𝑠𝑐𝑎𝑙𝑒(𝑢𝑐, 𝑟) = 𝑟𝑐 ⋅ 𝑢𝑐                                                                    (4) 

where 𝐹𝑠𝑐𝑎𝑙𝑒 represents the weighted scaling operation, and 𝑥̃𝑐 denotes the output value for the (c)-th channel. 

4. EXPERIMENTAL SETUP 

4.1 Dataset and experimental environment 

In this study, the experimental image dataset comprises solely of aerial images captured by drones, specifically targeting 

power system insulator images, all with a resolution of 512512 pixels, as illustrated in Figure 4. This dataset encompasses 

various grid insulator images captured under diverse environmental conditions, including those featuring only the insulator, 

the insulator with connecting components, the insulator partially occluded by connecting components, and aerial images 

of insulators against varying backgrounds. 

 

Figure 4. Aerial images of insulators. 

The dataset comprises a total of 5,320 insulator images, with 4,256 images in the training set (including 850 images for 

the validation set) and 1,064 images in the test set, as detailed in Table 1. The hardware environment for the experiments 

includes an Intel I7 12700KF processor, an Nvidia RTX 3080 TI GPU, and 16 GB of RAM. The software environment is 

based on the PyTorch 1.7 deep learning framework running on Ubuntu 20.04, with Python 3.8 as the programming 

language.During training, Adam was chosen as the network optimizer, with a batch size of 8, an image size of 512×512, 

an initial learning rate of 0.01, and a total of 120 training iterations. 

Table 1. Data setting for training, validation and test sets. 

Dataset Training Validation Test Sum 

Insulator images 4256 850 1064 5320 

4.2 Evaluation metrics 

To evaluate the performance of the model with precision, we selected Precision (Pre), Recall (Rec), and F-Measure (F1)17,18 

as the metrics. Specifically, Pre represents the precision index, while Rec represents the recall index, both of which measure 

the accuracy of the model’s segmentation. Their formulas are expressed as follows: 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                    (5) 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                    (6) 

The quantities TP, FP, and FN, respectively, signify the count of false positives, true negatives, and false positives. To 

achieve better performance, both Pre and Rec should be as high as possible. However, due to the small proportion of 

insulators in the images and the presence of interference, there is often a trade-off between Pre and Rec. Therefore, we 

introduce the comprehensive evaluation metric F1 to better assess the model’s performance: 
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𝐹1 =
(1+𝛽2)×𝑃𝑟𝑒×𝑅𝑒𝑐

𝛽2×𝑃𝑟𝑒+𝑅𝑒𝑐
                                                                              (7) 

Here, 𝛽
2 is a hyperparameter that balances the influence of Pre and Rec on F1. When 𝛽

2 > 1, Rec has a greater impact on 

F1, and when 𝛽
2 < 1, Pre has a greater influence. Since insulators occupy a small proportion in the images and there are 

many interferences, to achieve more accurate insulator segmentation, the evaluation metric F1 should be more focused on 

Pre. Therefore, we set 𝛽
2 = 0.4. 

5. RESULTS AND DISCUSSION 

A comparative experiment was undertaken to ascertain the efficacy of the proposed ISMU-Net model as an enhancement 

to U-Net, by contrasting it against a range of advanced models. Specifically, U-Net, R2U-Net, and TransU-Net were 

selected and evaluated on the same aerial insulator dataset, using identical experimental conditions and tuning strategies. 

The visualization of the experimental results is shown in Figure 5. 

 

Original Image       Ground Truth           U-Net                R2U-Net           TransU-Net         ISMU-Net 

Figure 5. Segmentation results of different models. 

While visual comparisons can be intuitive, they are susceptible to subjective biases. As evident from Table 2, the proposed 

model surpasses the other models in Accuracy, IoU, and Dice Score, thereby validating its rationality and effectiveness in 

capturing intricate details and displaying robust performance. Due to the complexity of background images and the lack 

of extensive preprocessing and post-processing, the U-Net model, which introduces deconvolution and feature layer 

connections, mitigates the loss of detail information to some extent, improving the results. The R2U-Net model, leveraging 

recursive neural networks, achieves superior feature representation and improved metrics. Meanwhile, the TransU-Net 

model incorporates a transformer structure in the encoder, enabling better feature extraction. However, as the encoding-

decoding process deepens, it may lose some global features. Nonetheless, its segmentation performance still surpasses 

other current models. Compared to TransU-Net, the proposed model exhibits significant improvements in all metrics, 

indicating its ability to segment more cells in low-contrast regions and subtle edges, with better adaptability to brightness, 

noise, and other interferences, resulting in superior segmentation outcomes. 

Table 2. Quantitative analysis of different segmentation models. 

Model Pre Rec F1 

U-Net 0.8014 0.7585 0.8462 

R2U-Net 0.8219 0.8034 0.8739 

TransU-Net 0.9062 0.8441 0.9136 

Ours 0.9271 0.9172 0.9483 
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6. CONCLUSION 

Addressing the challenges of insufficient utilization of image feature information and insufficient segmentation accuracy, 

which are caused by the complex background of aerial insulator images and the scarcity of standard datasets, this paper 

proposes a model based on the U-Net architecture. The core component of it comprises a 2D-Selective-Scan along with a 

Squeeze Excitation block. By employing a visual state space module to replace traditional convolutional blocks, the model 

achieves precise localization and segmentation of insulators with varying sizes, shapes, and complex backgrounds. This 

approach significantly reduces the number of model parameters and enhances real-time performance. Furthermore, the 

integration of an attention mechanism in this module effectively utilizes both local and global feature information from the 

current layer, along with the rich semantic information embedded in the bottom data of the model, to mitigate information 

loss during the encoding-decoding process. 

Experimental results on an aerial insulator image dataset using ISMU-Net demonstrate that the proposed model can 

segment insulator regions of different sizes more comprehensively compared to other advanced models. It also exhibits 

strong generalization performance under various backgrounds. This model not only enables insulator segmentation under 

different backgrounds but also satisfies the requirements for real-time segmentation and detection during aerial 

photography. 
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