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ABSTRACT

Hyperspectral sensors provide useful discriminants for human face recognition that cannot be obtained by
other imaging methods. Near-infrared spectral measurements allow the sensing of subsurface tissue structure
which is signi�cantly di�erent from person to person but relatively stable over time. The spectral properties
of human tissue are also nearly invariant to changes in face orientation which bring signi�cant degradation to
most other face recognition algorithms. We examine the utility of using near-infrared hyperspectral images
for the recognition of human subjects over a database of 200 subjects. The face recognition algorithm exploits
spectral measurements for individual facial tissue types and combinations of facial tissue types. We demonstrate
experimentally that hyperspectral imaging promises to support face recognition independent of facial expression
and orientation.

1. INTRODUCTION

Various biometric identi�cation technologies based on cues such as �ngerprint, voice, and face provide the
potential for reliable automatic veri�cation.1 After 9/11, biometric identi�cation techniques have gained notice
as methods which can contribute signi�cantly to the war against terrorism. For applications such as homeland
security, we would bene�t from a face recognition capability which is fast, accurate, and reliable. Ideally,
a face recognition system will identify human subjects under unconstrained conditions, including unknown
illumination, arbitrary face orientation, and partial face occlusion. Such as system should also be capable of
operating with a signi�cant distance between the camera and the subject.

Current face recognition systems use primarily spatial discriminants that are based on geometric facial
features.2{6 Many of these systems have performed well on databases acquired under controlled conditions.7

However, these approaches often exhibit signi�cant performance degradation in the presence of changes in face
orientation. One study,8 for example, showed that there is signi�cant degradation in recognition performance
for images of faces that are rotated more than 32Æ from a frontal image that is used to train the system. A
more recent study9 which uses a light-�elds model for pose-invariant face recognition showed promising results
on faces rotated more than 60Æ. Algorithms that use geometric features can also perform poorly when subjects
are imaged at di�erent times. For example, recognition performance can degrade by as much as 20% when
imaging sessions are separated by a two week interval.8 Partial face occlusion also brings poor performance. A
method10 that divides the face into regions for isolated analysis can tolerate up to 1/6 face occlusion without
losing accuracy. Thermal infrared imaging provides an alternative imaging modality that has been used for face
recognition.11, 12 However, thermal imaging techniques use spatial features and have diÆculty recognizing faces
after pose changes. A 3D morphable face model has been used for face identi�cation across di�erent poses.13

This approach has provided promising performance on a 68 subject dataset. At the current time, however, this
system is computationally intensive and requires considerable manual intervention.

Spectroscopy, which represents the spectral distribution of light that is reected and scattered from an object,
is a valuable tool for a large number of applications. In remote sensing, for example, researchers have shown
that hyperspectral data are e�ective for material identi�cation in scenes where other sensing modalities are
ine�ective.14 Before the introduction of hyperspectral images, however, spectroscopy was limited to measuring
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Figure 1: Skin spectra for 4 subjects
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Figure 2: Four skin spectra for one subject
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Figure 3. Skin and hair reectance spectra for two sub-
jects - front view
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Figure 4. Skin and hair reectance spectra for two sub-
jects - 90Æ side view

isolated points. As hyperspectral cameras have become economically accessible, computational methods have
been developed for several applications15, 16 using combinations of spectral and spatial information.

Several of the limitations of current face recognition systems can be overcome by using spectral informa-
tion of human face tissue. The interaction of light with human tissue has been studied extensively by various
researchers.17{19 It is known that the surface reection of the skin at the air-tissue interface is only around
4% � 7% over the 250nm-3000nm spectral range20 and that the incident radiation is di�used by the stratum
corneum before entering the epidermal layer. The epidermal and dermal layers of human skin constitute the
major scattering medium which, together with the light-absorbing chromophores, such as melanin, hemoglobin,
bilirubin, and �-carotene, determines the skin's spectral reectance. Small changes in the chromophore concen-
trations induce signi�cant changes in the reectance.21 The e�ects are large enough, for example, to enable
algorithms for the automated separation of melanin and hemoglobin from RGB images.22 Multispectral skin
color models over the visible range have been studied for applications such as human detection, face tracking,
and computer graphics.23, 24 In the near-infrared (NIR), skin has a signi�cant penetration depth enabling the
imaging of subsurface characteristics that are diÆcult for a person to modify.25

Figure 1 presents an example of the spectral variability in human skin using measurements obtained at our
laboratory. It includes the reectance spectra measured from the right cheek of four subjects over the near-
infrared (700nm-1000nm). In �gure 2, four reectance spectra were acquired for one subject from di�erent facial
locations. We see that there are signi�cant di�erences in both the amplitude and spectral shape for di�erent
subjects while the spectral reectance for one subject remains similar from trial-to-trial. Spectral variation for
a single subject is also typically small over a range of poses. In �gure 3, near-infrared skin and hair reectance
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Figure 5: Hyperspectral imaging system set-up

Figure 6: Thirty-one bands for a hyperspectral image of one subject

spectra are plotted for two subjects as acquired in a front-view hyperspectral image. In �gure 4, reectance
spectra for the same subjects are plotted as acquired in a side-view (pro�le) image. We see that while there is
signi�cant spectral variability from one subject to the other, the spectral characteristics of the subjects remain
stable over a large change in face orientation.

In this paper, we consider the use of spectral information for face recognition. We present experimental
results on recognizing 200 human subjects using hyperspectral face images. For each subject, several near-
infrared images were acquired under di�erent poses and expression. Recognition is achieved by combining
spectral measurements for di�erent tissue types. Some subjects were imaged multiple times over several weeks
to evaluate the stability of the hyperspectral measurements over time.

2. DATA COLLECTION AND CAMERA CALIBRATION

The hyperspectral imaging system utilized for data collection is con�gured as in �gure 5. The hyperspectral
camera from Opto-Knowledge Systems, Inc. (OKSI) is based on a liquid crystal tunable �lter26 made by
Cambridge Research Instruments (CRI). The full-width at half-maximum (FWHM) of the spectral bands is
10nm for a center wavelength of 850nm and is proportional to the center wavelength squared. The locations of
the camera, the di�used light sources, and the stage where the subject sits were all �xed throughout the data
collection period. All images were captured with 31 bands spaced by 0.01�m over the near-infrared (0.7�m-
1.0�m) with 468�494 spatial resolution. A hyperspectral image of 31 bands takes about 10 seconds to acquire.
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Figure 7: Examples of images with di�erent expressions and rotations

Figure 8: Examples of images taken at di�erent times

Figure 6 displays all 31 bands for one subject. The 31 bands are shown in ascending order from left to right
and from top to bottom.

The spectral channels have unknown gains due to �lter transmission and CCD response and unknown o�sets
due to dark current and stray light. Therefore, we devised a method to convert the raw images acquired by the
hyperspectral camera to spectral reectance images for analysis.16 Two spectralon panels were used during
calibration. A panel with approximately 99% reectance is referred to as white spectralon and a panel with
approximately 2% reectance is referred to as black spectralon.

The raw measurement obtained by the hyperspectral imaging system at spatial coordinate (x; y) and wave-
length �k is given by

I(x; y; �k) = L(x; y; �k)S(x; y; �k)R(x; y; �k) +O(x; y; �k) (1)

where L(x; y; �k) is the illumination, S(x; y; �k) is the system spectral response, R(x; y; �k) is the reectance
of the viewed surface, and O(x; y; �k) is the o�set which includes dark current and stray light. To obtain the
spectral reectance image R(x; y; �k), we take hyperspectral images of the white and black spectralon to get the
raw measurements IW (x; y; �k) and IB(x; y; �k) respectively. Both measurements are averaged over 10 images.
With the averaged IW and IB , we can calibrate to reectance16 using

R(x; y; �k) =
(I(x; y; �k)� IB(x; y; �k))RW (�k)

IW (x; y; �k)� IB(x; y; �k)
+
(IW (x; y; �k)� I(x; y; �k))RB(�k)

IW (x; y; �k)� IB(x; y; �k)
(2)

We measured IW and IB at the beginning of each imaging session. After calibration, the reectance spectrum
will be invariant to illumination, although we keep the illumination �xed for di�erent imaging sessions.

We collected hyperspectral face images of 200 human subjects. Images of all human subjects were acquired in
sets of seven images per subject. Figure 7 shows the seven images for one subject. Two front-view images were
taken with neutral expression (fg and fa). Another front-view image fb was taken with a di�erent expression.
Four other images were taken with face orientations of -90Æ; -45Æ; 45Æ; and 90Æ, which are referred to as fr2, fr1,
1 and 2 respectively. Twenty of the 200 subjects were imaged at di�erent times separated by up to �ve weeks
from their initial imaging session. Figure 8 shows the front-view images of one subject taken at four di�erent
visits.

3. SPECTRAL METRIC FOR FACE RECOGNITION

In order to test the feasibility of hyperspectral face recognition, we represent each face image using spectral
reectance vectors that are extracted from small facial regions. Squares overlayed on the images in �gure 7
indicate the size and location of the regions that are considered for each subject. For the frontal images (fg,fa,fb),
�ve facial regions corresponding to the forehead, left cheek, right cheek, hair, and lips are used. For images
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acquired at other facial orientations, the subset of these facial regions that are visible are used as shown in
�gure 7. The forehead, for example, is not visible for a facial orientation of 90Æ:

For each facial region, the spectral reectance vector Rt = (Rt(�1); Rt(�2) � � � ; Rt(�B))
T is estimated by

averaging over the N pixel squares shown in �gure 7 according to

Rt(�k) =
1

N

X
x;y

R(x; y; �k) k = 1; 2; : : : ; B (3)

where the sum is over the N pixels in the square, B is the number of spectral bands, and t is one of the following
tissue types: f(forehead), lc(left cheek), rc(right cheek), h(hair), or l(lip). The normalized spectral reectance
vector Rt is de�ned by

Rt = Rt=kRtk (4)

The distance between face image i and face image j for tissue type t is de�ned by the square of the Mahalanobis
distance27

D0

t(i; j) =
�
Rt(i)�Rt(j)

�T
��1
t

�
Rt(i)�Rt(j)

�
(5)

where �t is the covariance matrix for the distribution of the vector Rt for a subject. Note that we are using a
single �t to represent variability for tissue type t over the entire database. Since the amount of data available
to estimate the covariance matrix is limited, we approximate �t by a diagonal matrix Lt with elements that
correspond to the variance at each �k: The matrix Lt(i) is estimated for each subject i using the vectors Rt(i)
from each image of subject i that contains tissue type t: The overall matrix Lt which is used to approximate
�t in (5) is obtained by averaging the Lt(i) matrices over all subjects. Figure 9 plots the diagonal elements of
Lt as a function of wavelength for the forehead tissue type. The corresponding functions for the left cheek and
right cheek are similar while the functions for lips and hair have a similar shape but a larger variance. We note
that the variance has larger values at the low and high ends of the 700-1000 nm wavelength range. This is due
primarily to a lower signal-to-noise ratio for the sensing system for wavelengths near the ends of the spectral
range.

Since tissue spectral reectance can have spatial variability, the distance D0

t(i; j) will have some dependence
on the locations of the squares used to compute Rt(i) and Rt(j). We address this issue by de�ning a set

St(i) = fR
(1)

t (i);R
(2)

t (i); : : : ;R
(M)

t (i)g of normalized spectral reectance vectors where each R
(k)

t (i) is derived
from a di�erent N -pixel square region in the image of subject i for tissue type t: A similar set St(j) is de�ned
for subject j: The distance Dt(i; j) is now de�ned as the smallest squared Mahalanobis distance between an
element of St(i) and an element of St(j)

Dt(i; j) = min
k2[1;M ];l2[1;M ]

��
R

(k)
t (i)�R

(l)
t (j)

�T
��1
t

�
R

(k)
t (i)�R

(l)
t (j)

��
(6)

In our experiments, we considerM = 5 adjacent square regions of size 17�17 pixels arranged in a cross pattern
to de�ne the sets St(i) for each tissue type except the lips. Smaller regions of size 9 � 9 pixels are used to
represent the smaller spatial extent of the lips.

Recognition performance can be enhanced by utilizing all visible tissue types. Thus, the distance between a
frontal face image i and a test face image j is de�ned as

D(i; j) = !fDf (i; j) + !lcDlc(i; j) + !rcDrc(i; j) + !hDh(i; j) + !lDl(i; j) (7)

where !t is 1 if tissue type t is visible in the test image and 0 otherwise.

For the analysis above, we have assumed that the calibrated normalized reectance spectra are invariant to
face orientation. This assumption may not be correct for large face rotations. In �gure 10, three normalized
forehead reectance spectra for a single subject are plotted together. It is clear that while the two spectra
with a 45Æ face rotation are similar, they deviate from the front view spectrum. Speci�cally, the spectra of
the rotated face tend to be atter than the front view spectrum. Therefore, we can adjust the spectra of faces
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Figure 9. Forehead spectral variance as a function of
wavelength
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Figure 10. Normalized forehead reectance spectra of
one subject
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Figure 11. First basis vector of forehead spectral vari-
ation due to face orientation
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Figure 12. Histogram of �1(j) for 400 forehead spectra

rotated 45Æ or 90Æ using singular value decomposition (SVD)28 techniques. Figures 11 and 12 illustrate this
method for forehead reectance spectra with a 45Æ face rotation. For each of the C subjects, we consider 3

normalized spectral reectance vectors: R
0

f (i) for the front view forehead spectrum, R
1

f (i) and R
2

f (i) for 45
Æ

right and left face rotations respectively. We can get 2C spectral variation vectors V(j) de�ned by

V(j) = R
1

f (j)�R
0

f (j) j = 1; 2; : : : ; C (8)

V(j + C) = R
2
f (j)�R

0
f (j) j = 1; 2; : : : ; C (9)

Applying the SVD to these 2C spectral variation vectors we can generate an orthonormal set of basis vectors
L1;L2; : : : ;LB which characterize the spectral variation vectors. The basis vector L1 that captures the most
variation is shown in �gure 11. We can approximate the spectral variation by

V(j) =

BX
b=1

�b(j)Lb � �1(j)L1 (10)

where the coeÆcients �b(j) that minimize the least square error are de�ned by

�b(j) = V(j) � Lb (11)
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Figure 13: Face recognition system data ow diagram

Figure 12 is the histogram of �1(j) for the 200 subjects. Since most coeÆcients �1(j) are negative, we conclude
that the forehead reectance spectra of faces rotated 45Æ are typically atter than the front view spectra. To
account for this variation, we adjust each 45Æ spectrum as

R̂
1
f (i) = R

1

f (i)� �1L1 (12)

R̂
2
f (i) = R

2

f (i)� �1L1 (13)

where �1 is the average of the �1(j). Thus, R̂
1
f (i) is a prediction for the spectrum that would be measured for

a front view of the patch of skin that generated the spectrum R
1
f (i) from a 45Æ view. For other tissue types as

well as other face rotations, similar adjustments are utilized.

4. EXPERIMENTAL RESULTS

We conducted a series of recognition experiments using an image database consisting of C = 200 subjects
according to the ow diagram fo �gure 13. At each imaging session, seven images of each subject were acquired
as shown in �gure 7. The images then were calibrated to generate the spectral reectance images. Image fg is
used to represent the subject in the gallery set which is the group of hyperspectral images of known identity.7

The remaining images are used as probes to test the recognition algorithm. Thus, the experiments follow the
closed universe model7 where the subject in every image in the probe set is present in the gallery.

The results of the experiments will be presented using cumulative match scores.7 For a probe image j,
the image in the gallery which corresponds to the same subject is denoted by Tj . Given a probe image j we
can compute D(i; j) for each of the C images i in the gallery. Probe j is correctly recognized if D(Tj ; j) is the
smallest of the C distances. Given a set of probes, the total number of correctly recognized probes is denoted
as M1. Similarly, Mn is the number of probes for which D(Tj ; j) is one of the n smallest of the C distances.
The cumulative match score function for an experiment is de�ned by Rn =Mn=P where P is the total number
of probes used in the experiment.

We �rst consider the use of the frontal fa and fb probes to examine the utility of the various tissue types
for hyperspectral face recognition. Figure 14 presents the cumulative match scores as a function of the rank n
that are obtained when using Dt(i; j) for each of the tissue types individually and D(i; j) for the combination
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Figure 14. Identi�cation performance using fa and fb
probes
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Figure 15. Performance comparison of probe fa and fb
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Figure 16. Identi�cation performance of rotated face
images
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Figure 17. Identi�cation performance of duplicate
probes

of all tissue types. We see that skin is the most useful tissue type for recognition while the hair and lips are less
useful. The top curve in �gure 14 shows that the best performance is achieved by combining all of the tissue
types. We see that for this case, over 90% of the probes are correctly identi�ed in the 200 subject database.
Figure 15 compares recognition performance when using probes fa and fb separately with the algorithm that
considers all tissue types. The fa images have the same facial expression as the gallery images while the fb
images have di�erent expressions. We see that accurate recognition is achieved in both cases which suggests
that recognition using hyperspectral discriminants is not impacted signi�cantly by changes in facial expression.
Nevertheless, probes with di�erent facial expressions are somewhat harder to identify.

Figure 16 examines the impact of changes in face orientation on recognition performance. Most current face
recognition systems experience signi�cant diÆculty in recognizing probes that di�er from a frontal gallery image
by more than 32Æ.8 As expected, however, hyperspectral images can be used to achieve accurate recognition
results for larger rotations. In �gure 16 we see that for probes that are rotated 45Æ to the left or right from the
frontal gallery image, 85% of the probes are recognized correctly and 97% of the probes have the correct match
ranked in the top 5. For the diÆcult case of probes that are rotated 90Æ; about 87% of the probes have the
correct match ranked in the top 10. These results utilize the distance function de�ned in terms of all visible
tissue types.

Figure 17 shows the recognition performance for duplicate probes, i.e. probe images taken on di�erent days
than the gallery image of the same subject. This experiment considers 98 probes acquired from 20 subjects at
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times between three days and �ve weeks after the gallery image was acquired. The same 200 subject gallery is
used as in the other experiments. We see that 92% of the probes have the correct match ranked in the top 10.
Figure 17 also compares the recognition performance for duplicate probes acquired over di�erent time intervals.
We see that performance for duplicates acquired within one week (40 probes) is similar to performance for
duplicates acquired at an interval of over one week (58 probes). This experiment indicates that hyperspectral
imaging has potential for face recognition over time.

5. CONCLUSION

We have demonstrated the utility of hyperspectral imaging for face recognition over time in the presence of
changes in head pose and facial expression. The experiments consider a database of calibrated near-infrared
(0.7�m-1.0�m) hyperspectral images for 200 subjects. A face recognition algorithm based on the spectral
comparison of combinations of tissue types was applied to the images. The results showed that the algorithm
performs signi�cantly better than current face recognition systems for identifying rotated faces. The algorithm
also provides accurate recognition performance for expression changes and the potential is promising for images
acquired over several week time intervals. Since the algorithm uses only local spectral information, we expect
that additional performance gains can be achieved by incorporating spatial information into the recognition
process. Previous work14 has shown that the high-dimensionality of hyperspectral data supports the use of
subspace methods for illumination-invariant recognition. A similar method may be useful for hyperspectral face
recognition under unknown illumination.
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