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ABSTRACT

The classical 2x2 matrix approach to geometrical optics is very limited for practical use, because
fundamental decompositions of system matrices do not yield matrices with physically significant
properties. The use of permuted matrices proposed by us previously (J. Opt. Soc. Am. 73, 1350-1359)
yields a much more powerful representation that is more useful for teaching from beginning undergraduate
to advanced graduate levels. The matrices of the previous theory are still valid, but when they are treated in
what might be called the focal plane representation, the matrices obtained by the LDU decomposition have
a simple and direct physical meaning. The relationship between the older matrix theory and this one is
analogous to the relationship between the Descartes and the Newton formalisms of geometrical optics:
matrix components are simplified by measuring all distances from the foci. This facilitates synthesis
problems, for which the standard approach is not well adapted. In addition to simple applications like
lenses, mirrors and diopters, the theory can be applied to more complex cases like lenslike media,
resonators, Fourier transform systems and phase-conjugate mirrors. This theory can be directly generalized
for nonsymmetrical systems using a 4x4 matrix formalism. The other theory, where distances are
measured from the principal planes, cannot be generalized for nonsymmetrical systems having no principal
planes.

INTRODUCTION

The teaching of geometrical optics is often uses a matrix representation which is useful, because the manipulation of
matrices is well-known and relatively simple. The matrix representation is based on the linear relationship between the
spatial coordinates of a ray propagating between an input and an output plane:

x'=Ax+B (1)

'=Cx+D (2)

where x and x' are the spatial coordinates and and ' are the direction cosines at the input and output planes. These
equations may be expressed in matrix form

x'AB xMx (3), CD
The problem with this representation is that the decomposition of a system matrix M into elements that are fundamental
from the matrix theory point of view are not fundamental from the Optics point of view. This is not very good from a
pedagogical point of view, and limits the usefulness of the matrix representation for teaching purposes. From the Optics
point of view, the fundamental quantities are the principal planes and the foci of the system. The fundamental matrix
decomposition is the so-called LDU decomposition,

M=LDU (4)

where L, D, and U are respectively a lower triangular matrix, a diagonal matrix, and an upper-diagonal matrix. We have
shown1 that the LDU elements of a transfer matrix M respectively represent a lens passage through a lens, a scaling of the
coordinates, and a free-space propagation. These parameters are not usually the ones that are of interest in optical systems, so
we searched for a better representation.

Note that in the matrix theory the propagation through the system is from left to right, whereas in the illustrations, we shall
maintain the tradition of having light travel from right to left.

A DIFFERENT MATRIX REPRESENTATION

We found that a slight modification of the representation yielded a much more useful representation. All we have to do is use
the row-permuted system matrix PM instead of the system matrix itself, where P is the permutation matrix

=[ (5)
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This can be done from existing equations by multiplying both sides of Eq. (3) by the permutation matrix P.For a general
system matrix

M=['] (6)

this yields
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An equivalent (and more physical) representation is to represent the system matrix M as an anti-diagonal matrix with an
upper-diagonal matrix on each side. It is easy to see that

M=U1AU2=11 a 1
L0 ii 1 0

[-1/f
f 111 bi
0 ]Lo ii

where a=A/C, b=D/C and f=-1/C. In this representation, each matrix of the decomposition has a direct physical meaning.
First notice that the antidiagonal matrix A corresponds to propagation between the focal planes of the system; so the two
matrices Ui and U2 correspond to propagations between the entrance and exit planes and the foci. Remembering that in this
matrix theory, propagation goes from left to right, the general decomposition corresponds to propagation from the entrance
plane through a distance b to the front focal plane, followed by propagation through the system to the back focal plane,
followed by propagation from the back focal plane to the exit plane through a distance a.

So we see that this decomposition, that we have called thefocal plane representation, immediately gives us the equivalent
focal length f of the system as well as the positions of the focal planes with respect to the input and output planes.

Of course the principal planes are at distances f from the focal planes. The matrix for propagation between the principal
planes is

M=
1/f 1

which of course is also the matrix representation of a thin lens.

The sign conventions are the same as for the Newton S0S=f2 representation. In summary,

1) If f is positive, the foci are located outside the principal planes, and if f is negative, the foci are located inside those
planes.
2) If b is positive, then the focus Fl is on the right side of the input plane, and if b is negative, P1 15on the left side of the

input plane.

3) If a is positive, then the focus F2 is on the right side of the input plane, and if a is negative, P1 is on the left side of the

input plane.

4) The distances between the principal planes and the focal planes are Ki =b÷fand K2 = a-i-f.

One may ask: why not use directly the LDU decomposition of the original matrix M istead of the permuted matrix PM?
The answer is the following: the LDU decomposition for the propagation from an input plane at a distance d1 from a thin
lens to an output plane at a distance d2 after the lens is

1 0M= f
Li_ 1 0
f-d2 f-d2

We see that if d2=f, the term in the matrix on the left become infinite, so this representation does not allow the calculation
of propagations from the foci of the system. On the other hand, the permuted decomposition has no singularities, except for
the impossible case f=0. As it turns out, the simplest representation of a lens is for the propagation between its foci,
becauase in the new representation, we see by setting a=b=0 in Eq, (8) that the focal plane representation of a lens is

(7)

(8)

(9)

0
f -d2

0 1

(10)
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L=[
0 f

]
(11)

-1/f 0

and we see that for any opticai system, the operation of diagonalization of the system matrix corresponds to reducing the
system to its focal length representation.

It is important to note that the system matrix M is still the same matrix as in the old theory. This is very useful for
pedagogical purposes, because we have the best of both worlds: the old matrix discussions in texthooks is still valid, and our
new approach adds to this knowledge (in addition to being easier to use).

We now consider some simple examples that show how this approach can be used both for theoretical purposes and to solve
practical problems.

TWO THIN LENSES

To illustrate the pedagogical usefulness of this approach, let us calculate the cardinal points of two thin lenses with their foci
separated by a distance d as illustrated in Fig. 1 . Starting from the front focal plane of the first lens Li and finishing at the
back focal plane of the second lens, the system matrix is

PM = -i/f2 0 i d 0 fi cVfif2 -fi/12
(12)

0 f2 0 1 -i/f1 0 -f2/fi 0
where the first matrix on the left represents the propagation between the two focal planes of lens L1 ,the central matrix is the
propagation between the two foci, and the matrix on the left is the permuted matrix for the propagation between the two foci
of lens L2. The LDU decomposition of this matrix is

PM = d/flf2 0 1 -f12141
(i3)

-fi/tI 1 0 -f1f/d 0 1

and applying the permutation operator P to the matrix on the left yields

M = -fjtI d/fif2 0 1 -f12k1
(14)

0 1 0 -f1fz/d 0 1

The interpretation of this expression produces new and simpler relations than those commonly used for the positions of the
cardinal points of a two-lens system. Since the matrix in the middle contains the equivalent focal length and the two others
contain the distances to the foci of the system, the focal length of the combined system is

f'=-fif2/d (15)

and that the distances between the foci of the combined system and the foci of the individual lenses is

K'=f22/d (16)

K=-fi2/d. (17)

The principal planes, of course, are located at distances from the system foci.
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Figure 1: Two-lens system



THREE LENS SYSTEM

To illustrate this, consider a three-lens system as shown in Fig. 2.

input

and the permuted LDU decomposition yields

b=d1-i- U311
'2 - U2U3

(18)

There are a few things that are worth pointing out at this point. First, we see that the expressions (12) - (14) for the focal
length and the positions of the foci appear directly in the LDU decomposition; second, the expressions for the positions of
the foci are simpler that those that are commonly used (measured from the lenses). The conclusion is important and is also
valid for more complex systems: it is simpler if everything is always measuredfrom the foci of the lenses instead of from
the lenses themselves..

In the matrix theory usually taught in textbooks, the student must learn not only the matrix representation, but also
expressions for the cardinal points. With this approach, this is not necessary, because the quantities of interest appear directly
as matrix elements. And if the professor or student would rather work with the mathematical expressions, expressions such
as (16) and (17) are easier to remember than the standard expressions with distances measured from the lenses, because all the
expressions are of the form of Newton's equation S0S1 = f2.

Figure 2: Three-lens system

output

The system matrix for propagation from an arbitrary plane at a distance di to the left of the front focal plane of the first lens
to an arbitrary plane at a distance d2 to the right of the back focal plane of the third lens is

M = cLf+d2f-d2d3f4 d1d2d3d4+ d1d+d1d2f+ d3d4f- f2f
fif2f3 f - d2d3 -d1d2d3+d1f+d3f

I i d4 + d2f 0 1 d1 + d3f
M f - d2d3 f - d2d3 f - d2d3 (19)

0 1 f-d2d3 0 0 1

L flf2f3

which immediately tells us that the equivalent focal length is equal to

f =
f:-d2d3

(20)

and that the front focal plane is at a distance

(21)

from the input plane, and that the back focal plane is at a distance
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Figure 3: Focal length doubler
For a first course in geometrical optics, this problem is relatively fastidious to solve, but with our matrix approach the
solution is quick and easy. The propagation between the two lenses is given by the matrix product

The now familiar decomposition yields

f2(f1-d)
fi + f2 - d

0 fif2

0 0

fi2 = 2f
f1+f2-d

f2(f1 - d)r rU - Ii

f1(f2 - d)
d - f1 - f2

1

(22)

from the output plane. If the input planes had been taken at the front focal plane of the first lens and the output plane atthe
back focal plane of the last lens, the expressions would be the same except that di and d would be equal to zero.

PRACTICAL PROBLEMS

The old matrix approach is not very useful for solving practical geometrical optics problems, and students usually have to
forego the matrix approach to solve the problems they are assigned. On the other hand this approach is quite powerful, and
can be used directly to solve relatively complicated problems. To illustrate this, consider the following moderately complex
problem of a focal length doubler for a camera. I have given this problem (with real numbers) on an exam to second-year
Physics students trained with the old methods, and most of them were unable to fmd the answer. With the new method ,it
can be done in minutes. Here we do the more tedious calculation using variables.

A camera with a lens Li with a focal length i is to have its focal length doubled by means of a lens L2. LensL2 replaces
lens Li , and lens Li must be placed at an unknown distance d in front of lens L2. What is the focal length of L2 and the
distance d between the two lenses?

L1 L2

M= 1 0 id 1

-1/f2 1 0 1 -1/f1
0 _ 1-d/f1
1 d/f1f2 - 1/fi - 1/f2

M=

1-Wf2 I (23)
d

0 1
-fi - f2 +d

fi f2

Now the focal length contained in the middle matrix must be equal to 2f1 ,so

(24)

(25)

and the back focal plane of the system must be unchanged on the film, that is at a distance f behind lens L2, and this is the
distance on the matrix on the left side, so
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These two equations are easily solved to yield the solution

f2 -fi (27)d = f1/2.
For this problem, as for most geometrical problems solved using this approach, the solution is straightforward, and involves
only or mainly decomposing the transposed matrix into its LDU decomposition.

ADVANCED PROBLEMS

The matrix approach described above can be applied to more complex systems such as thick lenses, lenslike media,
symmetrical mirrors and resonators, phase-conjugate mirrors, cylindrical lenses and mirrors, and may be generalized to
include non-symmetrical optics like thick cylindrical diopters and lenses with arbitrary orientations.

As a matter of fact, it was the study of the geometrical optics of nonsymmetrical systems and the realization that in general,
such systems systems do not have principal planes, that led us to develop a matrix theory for such systems of which the
theory presented here is a special case.

Space limitations do not allow the full description of all those systems, and the interested reader is referred to the
bibliography for details. We present here only a few cases of educational interest.

SPHERICAL DIOPTER

An important case is the spherical diopter, whose transfer matrix is easily shown2 to be equal to

M= (28)nl-n2
R

where R is the radius of the diopter, and ni and n are respectively the index of refraction of the input and of the output
media. The permuted LDU decomposition of this matrix

1 -R R -R
M= n2-nl fl2-fll n2-nl (29)

0 1 nl-n2 0 1
R

immediately yields the two focal lengths of the diopter

fl= niR
n2-nl

(30)
fd2=

fl2

taking into account that the distances must be multiplied by the index of refraction of the medium.

THICK LENS

The cardinal points of a thick lens may be obtained in a straightforward manner by combining two diopters. Consider the
general case of a thick lens of index 2 immersed in media of ni and ri2 on the entrance and exit sides respectively.

It is easily calculated from Eq. (25) that the propagation from the front focal plane of the first diopter to the back focal plane
of the second diopter constituting the thick lens is given by the matrix

R2(n2-n1)

M= R1(n2-n3
(31)(n3 - fl2)(fl2 - n1) (d - R1 - R2 Ri(n2 - fl3)

R1R2 kfl2 112 - 111 fl3 - 2 R2(n1 - n2)

whose LDU decomposition, after row permutation yields
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[ 1
fR2(ni - fl2) 0 f fRl(fl2 fl3)

M= R1(n2- fl3) R1(n1 - n2) (32)

[0 1 -1/f 0 0 1

with

I = d(n3 - n2)(n2 - n1) n3 - n2 n2 - n1 (33)f n2R1R2 R2 R1

This yields immediately the focal lengths of the lens, f/n1 and f/n3. The distances to the foci of the thick lens as measured
from the entrance and exit points are given by the upper diagonal terms in the right and left matrices, multiplied by the index
of refraction.

The above calculations are not trivial, because we are using theoretical values. If actual numbers are used in a practical
problem, these calculations are almost trivial and can be calculated in minutes without any knowledge of the formulas.

LENSLIKE MEDIA

As a final and more advanced example, consider the propagation through a lenslike medium. This is a medium (such as an
optical fiber) whose index of refraction varies quadratically with the distance r from the optical axis

n = nØ - n2r2/2 no = constant (34)

The transfer matrix for such a system is

[
cos[d(i)2]

1
sin [c1(2)hh/2]I no ( 1/2 flo

M=J Ofl2) (35)
I 1/2 1 1fl2\1/21 I 1fl2- (non2) sin L°n) j cos

When this matrix is factored into its permuted LDU form, the antidiagonal term yields the focal length

f= 1
(36)

(non2)1" sin [(n)1/2]

and the distances to the focal lengths from the input and output planes are the upper diagonal terms

a = b = - cot [(-.-)h12] (37)
(non2)112

no

Due to limited space, we refer the reader to the bibliography2 for other applications such as mirrors and resonators, phase-
conjugate mirrors and applications to optical systems without rotational symmetry3'4, where the 2x2 matrices are replaced
by 4x4 matrices.

CONCLUSION

The matrix approach to matrix optics presented here simultaneously builds upon the classical approach and yet modifies it
radically. The matrices defined according to the previous approach are still valid, so it is not required that the professor and
students forget previously acquired knowledge. Yet it profoundly modifies the approach to classical geometrical optics where
the principal planes play a dominant role. In addition, the representation of an optical system as an antidiagonal matrix is
simpler and corresponds to a more fundamental mathematical entity.

In the new approach, the principal planes are not even necessary: all the physical parameters needed and that appear in the
decomposition refer to the foci of the system. This is more than a superficial accident, because when this approach is
generalized to nonsymmetrical systems consisting for example of cylindrical lenses rotated by arbitrary angles, it is found
that such systems do not in general have principal planes, but that they always have (line) foci. This shows that the focal
plane approach is more fundamental than the approach based on principal planes.

126 / SPIE VoL 1603 Education in Optics (1991)



1H. H. Arsenault, Generalization of the principal plane concept in matrix optics, Am. J. Phys. 66, 397-399 (1980).

2H. H. Arsenault and B. Macukow, Factorixzation of the transfer matrix for symmetrical optical systems, J. Opt. Soc. Am.
73, 1350-1359 (1983).

3H. H. Arsenault and B. Macukow, Matrix decompositions for nonsymmetrical optical systems, J. Opt. Soc. Am. 73,
1360-1366 (1983).

4B. Macukow and H. H. Arsenault, Extension of the matrix theory for nonsymmetrical optical systems, J. Optics (Paris)
15, 145-151 (1984).

SPIE Vol. 1603 Education in Optics (1991)1127


