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ABSTRACT

A simple experimental technique for measuring the lifetime of long-lived excited levels for low
intensity monoexponential fluorescence signals is presented. It is based on the measurement of the
imaginary part of the Fourier transform of the probability density function of the time of arrival of the
first photon after the excitation. Owing to its theoretical and practical contents (photon counting
techniques, lifetime measurement techniques), this experimental procedure may constitute a suitable
practice for undergraduate students in Optics and Solid State Physics.

1, INTRODUCTION

Based on our recent studies about 13photon statistics of deterministic signals of low intensity,
we present in this work a simple experimental procedure for determining the lifetime of long-lived
excited levels when the intensity of fluorescence is low (less than one photoelectron per lifetime) and
the decay is represented by only one exponential. This experiment can constitute a suitable practice for
undergraduate students in Optics and Solid State Physics, since not only information about the internal
constitution of some solid compounds can be obtained but introduces new experiments with photon-

counting techniques.
As has been established previously for monoexponentially decaying signals, the imaginary part

of the Fourier transform of the probability distribution function (IFPDF) of the time of arrival of the
first fluorescence photon after the excitation shows a peak centered at the frequency orl ,

being the lifetime of the excited level. The measurement of the IFPDF and its fitting to a simple curve (a

dispersion curve in our case) give the required parameter t. The experimental set-up is very simple: a
modulated laser beam tuned to the appropriate frequency, a photon counting detection system, a time-
interval counter and a desk computer to collect the time intervals and to perform the calculation of the

IFPDF. By using standard fitting techniques the parameter tand its corresponding error can be easily
obtained by repeating the experiment a fixed number of times.

The proposed experiment may be complemented by comparing these results with those
obtained through the conventional single photon decay spectroscopy (SPDS) technique for the same
experimental conditions in order to show the advantages and disadvantages of both methods.
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2. THEORY

The intensity emitted by fluorescence depends on time which, in the case of single exponential

decay can be given by

1(t) = Jo exp(-t/t0), (1)

where is the decay constant.
The probability distribution function of the time of arrival of the first photoelectron, Pf(t) ,is

obtained from 1(t) and is given 4

P<t) = 1(t) exp ( -51(e) dt'). (2)

By substituting expression (1) in (2), the complete theoretical expression can be obtained

P<t) = Jo exp(-t it0) exp(—10'r0[1---exp(-t/t0)]). (3)

The SPDS technique is used in experimental situations in which Toro<<1 is verified. In this
case, the simplified equation frequently used is

P(t) 1(t) = lo exp(-t/T0). (4)

As indicated in the introduction, the method proposed in previous papers 1,2 consisted of
directly measuring the Laplace Transform of the function Pf(t) without having to construct this
probability distribution first: that is, using a time interval counter, the t1 were measured and the
experimental estimator Q(s) was constructed being defined as

QL(S) = (1fN) exp(-st), (5)

N being the number of excitation cycles and N the number of t1 which were inferior to five times the
decay time expected in the experiment 5.

The theoretical value of the function QL(s) was readily found from

QL(s) = <exp(-st)> = S Pf(t) exp(-st) dt. (6)

For low light levels, the theoretical expression for QL(s) takes a simple form

QL(s) = I'r0 exp(-It0)/(1±sT0), (7)
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which is an ever decreasing function for s>O.
Moreover, if expression (6) is developed in powers of t, we obtain

N

QL(s)= (_s)k<tk>/k!, (8)
k=O

an expression which reveals the relationship between QL(s) and the factorial moments of P<t).

In this paper we are interested in the Fourier Transform of P(t)

TF(f) =fexp(-i2itft) Pf(t) dt =

j'cos(2itft) P<t) dt -i fsin(2icft) Pf(t) dt = (9)

<cos(2itft)> — i <sin(2itft)> = T0(f) - iTsm(f).

By introducing into these expressions the signals Pf(t) for low light intensity levels (Eq.(4)) we
obtain

ITF(f) I = W[( 1/-r0)2±(2irf)2] 1/2, ( lOa)

T0(f) = <cos(2icft)> = (To/To)/[(1/t0)2±(2irf)2] (lOb)

T(f) = <sin(2irft)> = 2icflo/[(1/to)2±(2tf)2I. (lOc)

The graphs corresponding to formulae (10) for positive values of f are given in Fig. 1. As can

be observed, while TF(f) I and T0(f) are ever decreasing functions, T(f) (IFPDF) shows a
maximum for a value of fm=1/(2irco), where the function takes the value To'rW2 and with a fullwidth
of Af2Nfm as is readily deduced from (lOc). The position of this maximum, therefore, allows the
decay time value to be identified easily.

The experimental estimator for T1(f) is given by

f) = (1/Ne) sin(2itft), (11)

where the symbols have the same significance as in expression (5).

Moreover, by performing for T1(f) the serial development analogous to that indicated for
QL() in expression (8), we obtain

T(f) = J°sin(2itft) Pf(t) dt =
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(-1)k (2itf)2k--1 <t2k--1>/(2k±1)!. (12)

Thus, T(f) only contains information on the odd-numbered terms <t>, <t3>, etc., while QL(s)
includes all terms. This disadvantage may be balanced by the presence of well defined maxima in the

signal for T(f).

3. NUMERICAL SIMULATION OF THE EXPERIMENT

Before the performance of the experimental analysis, a computer simulation is carried out in
order to show how the simulation techniques work and how they can be applied to a real experiment.6
Two experimental situations for very low intensity fluorescence signals are simulated in order to
compare the conventional multichannel technique with the proposed method. In both cases a is kept to
0.01 and the number of excitation cycles ,N, chosen iO and iO. A typical value 'of =1 msec is
selected. For this value of a and from N=1O4, only 100 photoelectrons are expected to be detected.
If the interval [0, tnax=5tOI is divided into a minimum of 500 channels in order to construct P(t)
which fits expression (4), it is easy to understand that the 100 photoelectrons will be shared among the
channels in such a way that will make any kind of fit impossible. Although in this case we do not give
the graph for P(t) for obvious reasons, we have given in Fig. 2 the values of T(f) for this truly
extreme case. It is surprising how, in spite of the sparse information, a maximum for a reasonably

approximate value for t appears.
In more realistic case, we have simulated an experiment with 105 measurement cycles

maintaining the value of cx=O.O 1 . In Fig. 3 we give the Pf(t) with the corresponding straight line fit
after having eliminated the channels in which no photoelectron existed. The great fluctuation existing
can be seen which leads to a regression coefficient in the fit to a straight line in the order of 0.56,
which indicates the difficulty in distinguishing behaviour patterns different from that of the
monoexponential. In Fig. 4 we show the graph for T(f) when the same t1as in Fig. 3 were used.
The maximum clearly stands out and indicates a single exponential decay behaviour in the signal and
the decay time value.

4. EXPERIMENT

Next an experiment was carried out to measure the decay constant for a TMMC crystal at room
temperature. This sample has been sufficiently studied by other authors 2 for the results obtained by

measuring T1(f).
Our experimental setup, schematically shown in Fig. 5, consists of an Ar+ laser (Spectra-

Physics 2020-03) as the source of excitation, an acousto-optic light modulator (NRC N33-D), which
admits pulses with a width of several tsec. and is governed by a signal from a pulse generator (HP-
8005B).
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The photon-counter detection chain consists of an RCA cooled photomultiplier (C3 1034) and a
amplifier-discriminator (PAR 1 120). The signal can be treated by means of a correlator (Malvern
K7025) operating in multichannel mode or by measuring the time intervals between the end of
luminous excitation and detection of the first photoelectron with a photon-counter (HP-5308A) whose
data are transferred to a HP-300 computer.

Owing to the emission and absorption spectra of the TMMC crystal, the sample was excited

with A=476.5 nm and the light emitted was observed through an interference filter centered in 650
nm.

For high intensities the multichannel technique gives the decay curve shown in Fig. 6 and from

its fit we get 'r0=841 .5 .tsec. which agrees very well with other authors 2•
For low intensities (Ioto=O.4) we began with the technique of measuring Pf(t) (SPDS

technique). The results for 104 excitation cycles are shown in Fig. 7. As with the computer simulation,
fluctuations due to low signal-to-noise ratio for each channel can be seen. The straight line fit of P<t)
has a regression coefficient of 0.76 which shows the difficulty in discriminating the existence of
deviations from the behaviour of a single exponential.

Using the same t1 we constructed T(f) according to definition (1 1) and obtained the
points in Fig. 8. Since the curve for T(f) shows a maximum for 2itf=1/t0 ( 1O in our case),
the f values were chosen so that they covered approximately two orders of magnitude around the
estimated value Higher values contain no significant information about the position
of the maximum and show fluctuations which reduce the goodness of the fit. In Fig. 8 we show the
best theoretical fitted function (continuous line) to the experimental points. Here, it is important to point
out that the theoretical function (continuous line in Fig. 8) used in the fitting procedure is not given by
Eq. (lOc) but by a modified version of this. This is due to the fact that the experimental excitation cycle
is not infinite but is given by the period of the excitation signal, Tm If this is taken into account, the
corrected version of Eq. (lOc) is

[T(f)] =T(f) - I sin(2itft) P(t) dt, (13)
Tma x

where the last term of the right hand side can be easily calculated. On the other hand Eq. (13) explains
the appearance in the experimental points of the small shoulder close to the main peak. This is
important since this shoulder could be interpreted erroneously as if another decay constant were present
in the fluorescence signal.

Ten series of 1O cycles were measured in the same conditions and the results of the fit for
both techniques are given in Table 1 . The error in the determination of for the ten series was about
2.6% for the Tsm(f) method.

The values of 'r0 deduced from the measurement of Pf(t) show a good average but the
regression coefficient and the value of 2 prevents (see ref. 7) the appreciation of deviations from the
assumed behaviour when the luminescence of an unknown sample is studied.
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Figure 1.- Plot of: a) ITF(f)I , b) T0(f) and c) T(f) versus 2itf. The values for lo
and 'to are 200 photoelectrons/sec. and 1 msec. respectively.
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Figure 2.-Experimental simulation of Tsm(f).( The experimental values are represented
by *) for a=0.0 1 and N= 104.
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Figure 4.- Experimental simulation of T(f) (the experimental values are represented
by *) for cx=O.O1, t0=1 msec. and N= 105.
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Figure 3.- Experimental simulation of P1(t) (logarithmic scale) obtained by means of a

multichannel with 300 channels (cz=0.O1, t0=1 msec. and N=105) . Continuous line
represents the theoretical fitted function.
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Figure 5.- Experimental setup. AOM :Acousto-optic light modulator; M: Mirror;

Ph:photomultiplier, S :Sample; RFD:Radio-frequency driver, PG:Pulse generator;
AID:Amplifier-discriminator; TIC: Time-interval counter, F:Filter (650 nm); L:Lens.
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Figure 6.-Fluorescence time behaviour (logarithmic scale) of undopped sample of TMMC
used in the experiment.
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Figure 7.-Experimental result for Pf(t) (logarithmic scale) obtained by means of a

multichannel analyzer with 300 channels. Continuous line represents the theoretical fitted
function.
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Figure 8.-Plot of one of the series measured for Tsm(f) (*) together with the theoretical
fitted function (continuous line).
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Fitted function
Parameter Pf(t) T(f)

860.4 818.5s

e0(%) 3.7 2.2

62 0.8

r2 0.76

Table 1. Fitting results for Pf(t) and Tsm(f). t0 = mean value of 'r0, e0 = error in #c0

for ten measured series, X2 = value of the reduced chi-square parameter, r =regression
coefficient for the straight-line fitting.
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