

Research on data consistency method based on distributed network

architecture

Hehui Zhang*a, Xi Songb, Yong Yanga, Wenhui Lib

aState Grid Gansu Electric Power Research Institute, Lanzhou 730050, Gansu, China; bState Grid

Gansu Electric Power Company, Lanzhou 730046, Gansu, China

ABSTRACT

In response to the demand for fault tolerance in distributed network systems, this paper analyzes the challenges of

distributed architecture to the design of Byzantine Recovery System. As distributed architecture replaces the centralized

architecture, Byzantine Fault Tolerance designs using internal bus or direct connection for communication between FCRs

have become more and more challenging. This paper proposes a data consistency method based on the distributed network

architecture, which can achieve data fault tolerance through independent redundant network communications, which is

applicable to the design of fault-tolerant systems for network systems or sensor systems using distributed architectures.

Keywords: Distributed architecture, data consistency, error tolerance

1. INTRODUCTION

The consistency and reliability of data is related to the normal operation of the core system, due to the complexity and

diversity of the cosmic space environment, the failure modes of the devices in the space environment are not completely

known. This requires the study of fault tolerance methods in the case of unclear failure modes, so that systems in the case

of partial hardware failure, are still able to fulfill the expected tasks. Tolerance of arbitrary failure modes is called Byzantine

Resilience, and its basic approach is to isolate arbitrary modes of failure occurring during computation by using redundant

computers, providing them with identical inputs, executing the same code, running them synchronously, and reach data

consistency by comparing the outputs. Since the Byzantine Recovery System is extremely reliable due to the shielding of

module or individual machine failures caused by hidden unknown faults through hardware redundancy, it enables the

system to be effective in terms of key safety and reliability performance indicators.

However, traditional Byzantine recovery for data agreement assumes that the communication link between redundant

computers is perfectly reliable. In practice, to ensure such reliability, the systems are forced to place redundant computers

centrally and connect those redundant computers via a reliable internal bus1. However, with the development of distributed

network technologies, centralized architectures are becoming more and more difficult to meet technological needs. Under

the distributed architecture, redundant computers can be interconnected through the network, and the reliability of the

communication cannot be guaranteed due to the possible failure of the network itself (e.g., failure of the network switch

or failure of the network link, etc.)2. Based on the above needs, this paper proposes a redundancy architecture and

mechanism that can be used to improve the reliability of critical individual computers in distributed architectures by

achieving data consistency under the premise of unreliable communication networks.

2. BYZANTINE FAULT TOLERANCE AND CHALLENGES OF DISTRIBUTED

ARCHITECTURE

2.1 Problem of the Byzantine Generals

The concept of Byzantine fault tolerance is derived from the solution of the Byzantine Generals Problem, a distribution

consistency protocol challenge. Faulty components may send contradictory messages to different parts of the system, and

dealing with such faults can be abstractly described by the Byzantine Generals Problem: Imagine that the Byzantine army

is divided into several parts stationed outside the enemy’s city, and that each part is under the command of its own general,

who can only send messages to each other through messengers. After observing the enemy situation, they must make a

*zhh950620@163.com

International Conference on Optics, Electronics, and Communication Engineering (OECE 2024),
edited by Yang Yue, Proc. of SPIE Vol. 13395, 133954K · © 2024 SPIE · 0277-786X · Published

under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.3049015

Proc. of SPIE Vol. 13395 133954K-1

common plan of action, however, some generals may be traitors and will inevitably prevent the loyal generals from

agreeing3. This decision making process requires an algorithm to ensure:

(A) All loyal generals adopt the same course of action.

(B) A handful of traitorous generals cannot make a loyal general adopt a wrong plan.

Let vi be the message sent by the ith general, to satisfy condition A, the following condition must hold:

1) Every loyal general must be given the same information vector (v1, v2, v3…)

2) If the ith general is loyal, then all other generals will use the same message sent by the resulting general vi.

The problem describes a system of n generals with f traitors among the n generals (including the main general), where the

main general sends an order to each vice general. The goal is to design such a protocol to ensure that if the main general

is loyal, all loyal vice-generals receive messages from that main general, or if the main general is a traitor, all loyal vice-

generals at least agree on a value.

2.2 Byzantine restoration systems

The general in the Byzantine general problem corresponds to the processor of the computer system, the traitor corresponds

to the processor that suffers a Byzantine failure, the messenger corresponds to the inter-processor communication link, and

agreeing on a common battle plan corresponds to the failure-free processor agreeing on the input data. Applying the

solution to the Byzantine generals’ problem to the design of highly reliable computers, it is possible to develop fault-

tolerant computer systems that work correctly when a processor experiences a Byzantine failure. Such a system can be

illustrated by the following example: suppose a computer system consisting of four processors, A, B, C, and D, in which

processor B fails and B may have the following failure modes4:

•Fail-Stop Fault: B fails and B stops working;

•General Fault: B fails, and B continues to work, but B gives the same message to A, C and D;

•Byzantine fault: B fails, B continues to work, and the information B gives to A, C, and D is inconsistent. For example,

the information exchange between B and A is all normal; the information interaction between B and C is all normal; but

the interaction between B and D is erroneous; since the states presented by B to A, C, and D are inconsistent, it is very

easy to cause misjudgment, such as misjudging that D is bad. The system that prevents this kind of failure phenomenon is

called Byzantine resilient system.

A computer system that can tolerate arbitrary, single random failures is called a 1-Byzantine recovery system.

Arbitrary can be interpreted to mean that the faulty processor mentioned above gives contrary, contradictory information

to other normal processors, and so requires a more elaborate design to protect against it.

Byzantine Recovery’s design requirements for a fault-tolerant computer are as follows5:

(1) All FCRs must be synchronized to a certain time domain (the upper limit of time difference is determined), which is

called synchronization requirement.

(2) Each FCR maintains independent communication links with at least 2f+1 other FCRs, called connectivity requirement;

(3) The existence of at least 3f+1 FCRs (stand-alone or modular) is called the cardinality requirement;

(4) The need to maintain at least f+1 rounds of communication between FCRs is called communication requirement.

An architecture that satisfies the above conditions is called an f-Byzantine recovery fault-tolerant architecture. In a fault-

tolerant architecture that satisfies 1-Byzantine recovery, it is necessary to have four FCRs, each connected to the others

through three disjoint communication links, and two rounds of exchanges need to be performed between the FCRs to

obtain a consistency judgment.

2.3 Challenges of distributed architecture

Traditional computers with Byzantine fault tolerance usually use centralized layouts with interconnections between FCRs

via internal buses or direct connections, and the interconnections are considered to be reliable. Distributed architectures,

on the other hand, are receiving more and more attention due to their advantages in terms of damage resistance, integrated

Proc. of SPIE Vol. 13395 133954K-2

resource utilization, and cable network optimization, especially the distributed layout sensor systems and network

transmission systems. Figure 1 shows a typical DIMA (Distributed Integrated Modular Avionics) architecture proposed in

the field of aeronautics, which is characterized by the sharing of system resources such as processors, memories, and sensor

interfaces, and the use of a distributed system architecture to disperse all the integrated modules throughout the entire

vehicle and connect all the modules through a real-time and fault-tolerant communication network, thus effectively

reducing the cable length and achieves shorter response times. The distributed architecture, represented by DIMA, breaks

the traditional centralized layout of the area, which poses a new challenge to the design of the Byzantine Recovery System.

Figure 1. Schematic diagram of DIMA architecture.

In response to this problem, credit-based Byzantine Fault Tolerance is proposed6. First, a set of candidate nodes is added

to realize the dynamic joining and withdrawal of consensus nodes, so as to ensure that when node replacement is required,

nodes can be selected from the candidate node set to replace the consensus nodes. Secondly, introduce a credit evaluation

scheme, calculate its credit value according to the node’s completion of consensus, and use the credit value to evaluate the

credit of the node7. Finally, design a node replacement scheme, when the credit value of a consensus node is lower than

the set threshold, use a candidate node replaces this node to reduce the consensus participation rate of dishonest nodes8.

The comparative experiments between VBFT algorithm and PBFT algorithm are carried out, and the results show that the

consensus delay of the improved algorithm is reduced, the throughput is increased9, and the algorithm efficiency is

improved. Voting-based Byzantine Fault Tolerance is proposed10. When a Byzantine error occurs on the master node, the

protocol of PBFT randomly selects a new master node according to the node number11. Although such a selection scheme

is simple, it is prone to the situation that the selected node is still a Byzantine node, resulting in a waste of resources.

3. DESIGN OF DATA CONSISTENCY ALGORITHM BASED ON DISTRIBUTED

NETWORK ARCHITECTURE

In order to realize data consistency under the distributed network architecture, it is necessary to connect each independent

redundant terminal Ti to an independently operating redundant network Ni, and the redundancy fault-tolerant architecture

is shown in Figure 2. The redundant terminals Ti are of identical design, the redundant networks Ni are physically isolated

from each other, and the interfaces between Ti and each network are independent of each other.

T1 T2

T3 T4

N1 N3

N2

Figure 2. Schematic diagram of fault-tolerant architecture.

Proc. of SPIE Vol. 13395 133954K-3

The assumptions that need to be met in order to achieve data consistency under a distributed network architecture include:

(1) All redundant terminals Ti must be synchronized to a certain time domain (upper limit of time difference determined);

(2) The system tolerates the failure of m arbitrary terminals and requires the presence of at least 3m+1 redundant terminals;

(3) The system tolerates n arbitrary network failures and requires the existence of at least 2n+1 independent networks;

(4) Each redundant terminal Ti is connected via at least 2n+1 independent networks and can maintain independent

communication links;

(5) At least m+1 rounds of communication must be maintained between redundant terminals.

Where m denotes the number of faulty terminals that the system can tolerate, and n denotes the number of faulty networks

that the system can tolerate. For example, the system needs to maintain data consistency in the case of 1 arbitrary terminal

failure and 1 arbitrary network failure, which requires at least 4 redundant terminals, 3 independent networks, and requires

each redundant terminal to maintain communication links with the other 3 redundant terminals through 3 networks at the

same time, and after at least 2 rounds of communication to reach data consistency.

Taking the typical redundant fault-tolerant architecture in Figure 2 as an example, assume that the data generated by Ti-T4

are A,B,C,D respectively, i.e., the information vector is [A,B,C,D], and the data agreement is reached when Ti-T4 all receive

[A,B,C,D] correctly through the information interaction and the redundant information processing. For this purpose, the

data interaction process and redundant information processing are defined as follows:

(1) First round of information interactions

T1-T4 send the information generated by this terminal to the other three redundant terminals through N1-N3 networks

respectively, and the sending method can be unicast, multicast or broadcast (due to the unreliability of the network itself,

there is a probability of error for any sending method), take T1 as an example, the information sent by T1 to the y terminal

through the x network can be written as Axy, and the sending matrix of T1 can be expressed as

[

𝐴12, 𝐴13, 𝐴14

𝐴22, 𝐴23, 𝐴24

𝐴32, 𝐴33, 𝐴34

]

(2) First round of redundant information processing

After the first round of information interaction, each redundant terminal will receive information from other redundant

terminals through different networks, taking T1 as an example, its received information matrix can be expressed as follows

[

𝐵11, 𝐵21, 𝐵31

𝐶11, 𝐶21, 𝐶31

𝐷11, 𝐷21, 𝐷31

]

Voting is performed for each row of information in the receiving matrix, and according to assumption condition 3, the

receiving matrix after voting can be obtained as [B1,C1,D1], and other redundant terminals adopt the same redundant

information processing method.

(3) Second round of information interactions

The redundant terminals will send the information received in the first round and after the completion of voting to all other

redundant terminals separately through different networks, taking T1 as an example, its sending information matrix can be

expressed as follows：

[

𝐵112, 𝐵122, 𝐵132

𝐶112, 𝐶122, 𝐶132

𝐷112, 𝐷122, 𝐷132

] (T1 sends a message matrix to T2)

[

𝐵113, 𝐵123, 𝐵133

𝐶113, 𝐶123, 𝐶133

𝐷113, 𝐷123, 𝐷133

] (T1 sends a message matrix to T3)

Proc. of SPIE Vol. 13395 133954K-4

[

𝐵114, 𝐵124, 𝐵134

𝐶114, 𝐶124, 𝐶134

𝐷114, 𝐷124, 𝐷134

] (T1 sends a message matrix to T4)

(4) Second round of redundant information processing

After the second round of information interaction, each redundant terminal will receive information from other redundant

terminals through different networks, taking T1 as an example, its received information matrix can be expressed as follows

[

𝐴211, 𝐴221, 𝐴231

𝐶211, 𝐶221, 𝐶231

𝐷211, 𝐷221, 𝐷231

] (Receive T2 information matrices)

[

𝐴311, 𝐴321, 𝐴331

𝐶311, 𝐶321, 𝐶331

𝐷311, 𝐷321, 𝐷331

] (Receive T3 information matrices)

[

𝐴411, 𝐴421, 𝐴431

𝐶411, 𝐶421, 𝐶431

𝐷411, 𝐷421, 𝐷431

] (Receive T4 information matrices)

First vote on the same source information arriving from different networks, according to the assumption condition 3, the

voting can exclude the data inconsistency caused by the network failure, after voting the received information matrix can

be expressed as

[

𝐴21, 𝐴31, 𝐴41

𝐵11, 𝐵31, 𝐵41

𝐶11, 𝐶21, 𝐶41

𝐷11, 𝐷21, 𝐷31

]

Then comparing the redundant information sent by different terminals of voting, according to the assumption condition 2,

we can get [A,B,C,D] and reach the data agreement.

4. CONCLUSION

In this paper, the limitations of Byzantine fault tolerance mechanism under distributed architecture, a data consistency

method based on distributed network architecture is proposed. This method is applicable to distributed architectures such

as DIMA, in that key devices can realize data consistency under distributed network through independent redundant

communication, which in turn can be used for redundancy backup and data fault tolerance of a distributed network systems

REFERENCES

[1] Ji, D. and Feng, D., “Asynchronous byzantine agreement protocol based on verifiable signature sharing,” Journal

of Electronics, 23(1), 64-68 (2006).

[2] Palumbo, D. L. and Butler, R. W., “A performance evaluation of the software-implemented fault-tolerance

computer,” Guidance, Control, and Dynamics, 9(2), 175-180 (1986).

[3] Gao, S., “T-PBFT: an eigentrust-based practical byzantine fault tolerance consensus algorithm,” China

Communications, 16(12), 111-123 (2019).

[4] Huang, D. Y., Li, L., Chen, B., et al., “RBFT: a new Byzantine fault-tolerant consensus mechanism based on Raft

cluster,” Journal on Communications, 42(3), 209-219 (2021).

[5] Ang, Y., Song, Z. and Cheng, T., “Improvement research of PBFT consensus algorithm based on credit,”

International Conference on Blockchain and Trustworthy Systems, Berlin, 47-59 (2019).

[6] Xu, J., Zhao, Y., Chen, H., et a1., “ABC-GSPBFT: PBFT with grouping score mechanism and optimized

consensus process for flight operation data-sharing,” Information Sciences, 624, 110-127 (2023).

[7] Cui, M., Zhang, J., Xue, Q., et al., “Improvement of practical Byzantine fault tolerance algorithm based on node

reputation value matching,” Second International Symposium on Computer Technology and Information Science

(ISCTIS 2022), 12474, 72-78 (2022).

Proc. of SPIE Vol. 13395 133954K-5

[8] Qin, H., Cheng, Y., Ma, X., et al., “Weighted byzantine fault tolerance consensus algorithm for enhancing

consortium blockchain efficiency and security,” Journal of King Saud University-Computer and Information

Sciences, 34(10), 8370-8379 (2022).

[9] Zhong, W., Feng, W., Huang, M., et al., “ST-PBFT: an optimized PBFT consensus algorithm for intellectual

property transaction scenarios,” Electronics, 12(2), 325 (2023).

[10] Liu, S., Zhang, R., Liu, C., et al., “Improvement of the PBFT Algorithm Based on Grouping and Reputation Value

Voting,” International Journal of Digital Crime and Forensics (IJDCF), 14(3), 1-15 (2022).

[11] Jin, B., Hu, Y., Tao, H., et al., “An improved practical Byzantine fault-tolerant consensus algorithm combined

with aggregating signature,” 7th International Symposium on Advances in Electrical, Electronics, and Computer

Engineering, 12294, 1175-1182 (2022).

Proc. of SPIE Vol. 13395 133954K-6

