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next generation of LIDAR space optics
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Introduction:

. Sometimes there is no next time” - LIDAR laser optics
for applications in space need to be carefully tested.
We supported LZH to improve the damage resistance
of ion beam sputtered (IBS), UV-antireflective optical
coatings. This achievement was only possible due to
further improvements of our test methodology
(algorithm based counting of damages in large area
raster scans) that can help manufacturing the best laser
optics in the world.
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ESA Aeolus observation satellite (launched in August 2018). We qualified
all laser optics for the Atmospheric Laser Doppler LIDAR Instrument
(ALADIN). Follow-up missions are being planned.

Damage resistance of LIDAR laser optics:
Laser-induced damage for nanosecond-pulsed lasers
(typical for LIDAR lasers) is initiated by nano-sized
particles (introduced e.g. during polishing or
coating). Thus, particles need to be mitigated via
ion or laser etching.

Optimization cycle:

Manufacturing
(with particle mitigation)

Microscopy 1:
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Data
analysis
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Microscopy 2:

After irradiation
Large area raster scan

Overcoming real-life challenges for counting and
classifying damages:

-Large data set (~150 stitched image files per raster scan)
-Laser cleaning, sometimes: surface particles

After irradiation

Before irradiation

Dust particle inducing multiple
damages

Small damages (“micropits”)
without detectable precursor

Python-script:
-Precise overlap of micrographs before and after test
-automized determination of size + number of damages

>4.5um in 60mm?2
area raster scan at
25 J/cm?
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Laser-induced contamination (LIC) testing:

Standard IBS optics:
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Similar susceptibility for LIC (low
compared to e-beam coatings)
EMCER LIC at 266 nm much stronger than at 355 nm
Conclusions:

e Raster scans with image analysis help coating manufacturers
to produce high quality laser optics

e Mitigation of LIC remains a very important topic for space

lasers, especially in the UV!
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