The nanocomposite, poly(3-hexylthiophene-2,5-diyl) (P3HT)–graphene/molybdenum disulfide (MoS2), was for the first time fabricated by the pulse laser ablation (PLA) method with different numbers of laser pulses deposited onto a porous silicon (PSi) substrate using the drop-casting technique. Nanocrystalline PSi films are prepared by electrochemical etching of a P-type silicon wafer. The optical properties, transmission electron microscope (TEM), and photodetector properties were studied. Optical measurements confirmed that the energy gap decreases from 2.03 to 1.87 eV with the increasing number of laser pulses for graphene and MoS2. This decrease in the energy gap was attributed to the increase in graphene and its combination with molybdenum. Due to the higher electrical conductivity of the hybrid material, the MoS2 leads to reduce the band gap. From the TEM images, it was found that the average size of the particles was between 3.1 and 20.8 nm depending on increasing the number of laser pulses for both graphene and MoS2 with hemispherical particle shapes. The Ag / PSi / P3HT − G / MoS2 / Ag photodetector was fabricated for all samples prepared to characterize the effect of laser pulses number for graphene and MoS2 on the photodetector performance. The maximum value of the specific response, specific detection, and quantum efficiency was 0.35 A / W, 5.1 × 1012 cm Hz1/2 W − 1, and 49.2% at 900 nm due to the absorption edge of silicon around 0.23 A / W, 3.3 × 1012 cm Hz1/2 W − 1, and 38.9% at 760 nm due to the absorption edge of P3HT − G / MoS2 NPS. The results indicate that the PLA method successfully fabricated the P3HT − G / MoS2 nanocomposites and that the resulting product exhibited high values in responsivity, detectivity, and quantum efficiency. Additionally, it appears that the nanocomposites may have enhanced the same parameters of the PSi photodetector.
The ability to modify and shape the surface of polymer and composite materials is crucial for a number of biological and electronics applications. Molybdenum disulfide (MoS2) and graphene are two-dimensional materials that have distinctive electrical and optical properties that are useful in many optoelectronic applications. The latest applications of graphene / MoS2, as well as heterostructure manufacturing, properties, and applications, are discussed. Heterostructured materials, as opposed to single-component materials, are designed to provide additional functionality or flexibility. Our study focuses on their unique traits and capabilities, as well as applications, notably in the field of photodetector technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.