Triboelectric energy harvesters continue to show promising and efficient performance in transferring mechanical energy into electrical energy, making them a prime candidate for biomedical implants. Total Knee Replacement (TKR) is a widely used surgery worldwide and, more so, in the United States. In this paper, triboelectric performance in biomedical applications is evaluated, especially in TKR. Performance of two new configurations of triboelectric energy harvester in TKR is compared as self-powered implanted sensors for loads measurements. The first configuration is a full knee harvester, covering the whole area of the tibial tray. The second configuration consists of two harvesters at the lateral and medial locations. Both configurations to be fit in the knee implant. The two designs’ performance was experimentally evaluated when subjected to an axial cyclic load applied by a dynamic tester at different frequencies. Also, the lateral and medial generators were tested for load imbalance detection producing promising results. Moreover, this study’s findings would contribute to the improvement of TKR by transforming them from passive to smart TKR using these implants, which will lead to better health monitoring.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.