This study focuses on the critical aspect of interfacial heat transfer during the solidification process in metal casting, aiming to optimize these manufacturing processes. Fiber-optic sensors were employed to provide continuous real-time monitoring of mold gaps and temperature profiles during the solidification of A356 aluminum in a permanent mold-casting environment. A specially designed mold system, constructed from unheated, uncoated tool steel, facilitated the seamless integration of these advanced fiber-optic sensors. One key technique used was the Extrinsic Fabry-Perot interferometric (EFPI) sensor, which uniquely utilized molten metal as the second reflection interface for measuring mold gaps. This method yielded impressively accurate results, with a maximum error of just 2μm compared to physical measurements. Additionally, using the Rayleigh backscattering (RBS) technique, a stainless steel-encased fiber provided real-time temperature measurements with an impressive spatial resolution of 0.65mm. The study demonstrates that combining high-resolution temperature profiles with gap evolution measurements significantly enhances our understanding of heat transfer dynamics at the mold-metal interface, proving particularly beneficial for optimizing complex-shaped castings and continuous casting processes. Furthermore, the capability to monitor the shape of the casting in real-time as it exits a continuous casting mold introduces a novel tool for quality control and process safety improvement by early detection of conditions that might lead to slab cracking and breakouts, ultimately enhancing overall process efficiency and reliability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.