Given the growing global demands on energy and fresh water, nuclear energy has become a promising source of power and freshwater production. Maximizing the nuclear power plant efficiency requires running the plant at maximum power capacity, however, the actual load might not require such huge power supply (1000 MWe +). Power plants operation with high to maximum efficiency has a profound effect on financial prices and environmental conditions for clear reasons which commands the attention towards various expensive and not efficient energy storage techniques (thermal, electrical and hydro). In this work, energy storage is substituted by a desalination plant that utilizes the excess energy to power the desalination unit. Therefore, this work explores the potential of water desalination as a proxy for energy storage systems in nuclear power plants. Various water desalination technologies are examined and compared in terms of economy, water quality and production capacity. Barakah nuclear power plant is used as a case study with APR1400 reactor design. On the desalination side, Reverse Osmosis (RO), Multi-Stage Flash (MSF), Multi-Effect Distillation (MED) and hybrid combinations are studied.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.