Images produced by CT systems with larger detector pixels often suffer from lower z resolution due to their wider slice sensitivity profile (SSP). Reducing the effect of SSP blur will result in resolution of finer structures and enables better clinical diagnosis. Hardware solutions such as dicing the detector cells smaller or dynami- cally deflecting the X-ray focal spot do exist to improve the resolution, but they are expensive. In the past, algorithmic solutions like deconvolution techniques also have been used to reduce the SSP blur. These model- based approaches are iterative in nature and are time consuming. Recently, supervised data-driven deep learning methods have become popular in computer vision for deblurring/deconvolution applications. Though most of these methods need corresponding pairs of blurred (LR) and sharp (HR) images, they are non-iterative during inference and hence are computationally efficient. However, unlike the model-based approaches, these methods do not explicitly model the physics of degradation. In this work, we propose Resolution Amelioration using Machine Adaptive Network (RAMAN), a self-supervised deep learning framework, that explicitly uses best of both learning and model based approaches. The framework explicitly accounts for the physics of degradation and appropriately regularizes the learning process. Also, in contrary to supervised deblurring methods that need paired LR and HR images, the RAMAN framework requires only LR images and SSP information for training, making it self-supervised. Validation of proposed framework with images obtained from larger detector systems shows marked improvement in image sharpness while maintaining HU integrity.
Tissue characterization from imaging studies is an integral part of clinical practice. We describe a spectral filter
design for tissue separation in dual energy CT scans obtained from Gemstone Spectral Imaging scanner. It
enables to have better 2D/3D visualization and tissue characterization in normal and pathological conditions.
The major challenge to classify tissues in conventional computed tomography (CT) is the x-ray attenuation
proximity of multiple tissues at any given energy. The proposed method analyzes the monochromatic images
at different energy levels, which are derived from the two scans obtained at low and high KVp through fast
switching. Although materials have a distinct attenuation profile across different energies, tissue separation
is not trivial as tissues are a mixture of different materials with range of densities that vary across subjects.
To address this problem, we define spectral filtering, that generates probability maps for each tissue in multi-energy
space. The filter design incorporates variations in the tissue due to composition, density of individual
constituents and their mixing proportions. In addition, it also provides a framework to incorporate zero mean
Gaussian noise. We demonstrate the application of spectral filtering for bone-free vascular visualization and
calcification characterization.
In this paper, we present a framework that one could use to set optimized parameter values, while performing
image registration using mutual information as a metric to be maximized. Our experiment details these steps
for the registration of X-ray Computer Tomography (CT) images with Positron Emission Tomography (PET)
images. Selection of different parameters that influence the mutual information between two images is crucial
for both accuracy and speed of registration. These implementation issues need to be handled in an orderly
fashion by designing experiments in their operating ranges. The conclusions from this study seem vital towards
obtaining allowable parameter range for a fusion software.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.