We successfully demonstrate 10-Gbbaud quadrature phase-shift keying signal transmission over a 4-km-long endlessly single-mode holey fiber using a wavelength-tunable semiconductor quantum dot (QD) laser. The transmission is carried out in the waveband of 1040.72–1070.02 nm with a bandwidth of 7.89 THz, which is broader than conventional wavebands such as the C and L bands. In the study, a QD laser notable for its wavelength stability and tunability is employed for its broad bandwidth availability on the transmission. Observed bit error rates are within a forward error correction limit of 2×10–3 under homodyne coherent detection configuration with offline digital signal processing. The abundant frequency resources in this T band (1000–1260 nm) help increase the capacity of a transmission link using a large number of wavelength channels by the QD laser.
We successfully demonstrate 20-Gb/s quadrature phase-shift keying (QPSK) signal transmission. The transmission was carried out over endlessly single-mode holey fiber in the waveband of 1276.02–1304.26 nm, whose bandwidth of 5.09- THz is broader than the traditional C-band. A wavelength-tunable quantum dot (QD) laser with broad wavelength tunability helps realize bandwidth availability. A single InAs/InGaAs QD optical gainchip was grown using a sandwiched sub-nanometer separator technique in the wavelength of 1.3-μm band. Using this gain chip, the QD light source has good wavelength stability, compactness and wavelength tunablility. The measured transmission results show bit error rates within a forward error correction limit of 2×10–3 using intradyne coherent detection with offline digital signal processing. In this study, it is expected that abundant frequency resources such as the O-band are coherently enhanced by the use of a large number of wavelength channels by effectively using the QD- laser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.