Nanostructured multicomponent (TiAlSiY)N coatings were fabricated by the vacuum-arc cathodic evaporation (CAPVD). The bias potential was -200 V and -500 V during the deposition process. The nanograin structure with small average crystallite size of about 7.5 nm and [110] preferred orientation were observed in the coatings deposited at high substrate bias (-500 V). Crystallites of about 41.6 nm in size and a preferred orientation with [111] axis were formed in coatings when the bias was -200 V. In this case, the nanostructured coating demonstrated the maximum hardness H = 49.5 GPa (superhardness). Additionally, the studied samples exhibited high abrasion and crack resistance, low wear at tribological tests. The testing of a polycrystalline cubic boron nitride (PCBN) cutter plate covered with (TiAlSiY)N coating fabricated at -200 V revealed an increase in the coefficient of resistance during cutting by 1.66 times in comparison with the base tool material.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.