Video data require a very large memory capacity. Optimal ratio quality / volume video encoding method is one of the most actual problem due to the urgent need to transfer large amounts of video over various networks. The technology of digital TV signal compression reduces the amount of data used for video stream representation. Video compression allows effective reduce the stream required for transmission and storage. It is important to take into account the uncertainties caused by compression of the video signal in the case of television measuring systems using. There are a lot digital compression methods. The aim of proposed work is research of video compression influence on the measurement error in television systems. Measurement error of the object parameter is the main characteristic of television measuring systems. Accuracy characterizes the difference between the measured value abd the actual parameter value. Errors caused by the optical system can be selected as a source of error in the television systems measurements. Method of the received video signal processing is also a source of error. Presence of error leads to large distortions in case of compression with constant data stream rate. Presence of errors increases the amount of data required to transmit or record an image frame in case of constant quality. The purpose of the intra-coding is reducing of the spatial redundancy within a frame (or field) of television image. This redundancy caused by the strong correlation between the elements of the image. It is possible to convert an array of image samples into a matrix of coefficients that are not correlated with each other, if one can find corresponding orthogonal transformation. It is possible to apply entropy coding to these uncorrelated coefficients and achieve a reduction in the digital stream. One can select such transformation that most of the matrix coefficients will be almost zero for typical images . Excluding these zero coefficients also possible reducing of the digital stream. Discrete cosine transformation is most widely used among possible orthogonal transformation. Errors of television measuring systems and data compression protocols analyzed In this paper. The main characteristics of measuring systems and detected sources of their error detected. The most effective methods of video compression are determined. The influence of video compression error on television measuring systems was researched. Obtained results will increase the accuracy of the measuring systems. In television image quality measuring system reduces distortion identical distortion in analog systems and specific distortions resulting from the process of coding / decoding digital video signal and errors in the transmission channel. By the distortions associated with encoding / decoding signal include quantization noise, reducing resolution, mosaic effect, "mosquito" effect edging on sharp drops brightness, blur colors, false patterns, the effect of "dirty window" and other defects. The size of video compression algorithms used in television measuring systems based on the image encoding with intra- and inter prediction individual fragments. The process of encoding / decoding image is non-linear in space and in time, because the quality of the playback of a movie at the reception depends on the pre- and post-history of a random, from the preceding and succeeding tracks, which can lead to distortion of the inadequacy of the sub-picture and a corresponding measuring signal.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.