The paper presents an investigation of synchronization between different rats' ECoG leads under anesthesia. It was shown, that sleeping/awake rats and rats under anesthesia demonstrate a statistically significant difference in the strength of synchronization between ECoG leads in certain frequency bands. Quantitative characteristics, that characterize the strength of synchronization between ECoG channels for different conditions: awake, sleeping, anesthesia, were measured.
Transcranical photobiomodulation (tPBM, 1267 nm, 32 J/cm2) is effective non-invasive method for clearance of beta-amyloid from the brain in mice with Alzheimer’s disease and for improvemen of their neurological status.
Here in ex vivo (confocal imaging) and in vivo (optical coherent tomography) experiments on adult mice, we clearly demonstrate that the meningeal lymphatic drainage is an important mechanism for the brain clearing that might be also pathway for the brain clearing from metabolites and waste products that requests further detailed studies. Photodynamic effects stimulate the meningeal/cervical drainage opening new ideas for development of novel methods of activation of brain clearing that might be progressive strategies in therapy of neurovegetative diseases.
Here we present preliminary experimental data suggesting about involvement of the meningeal and cervical lymphatics in neurorehabilitation. Using model of hemorrhagic stroke, immunohistochemical analysis and atomic absorption spectroscopy, we clearly demonstrate the lymphatic clearance from the blood after stroke via the meningeal lymphatic vessels with further accumulation of hemosiderin and iron (products of disaggregated hemoglobin) in the deep cervical node (dcLN). The optical coherent tomography (OCT) was used for in vivo monitoring of accumulation of gold nanorods (92 nm in diameter) in the dcLN after their injection into the cisterna magna with the aim of mimicking of the brain clearance from of blood. The both ex vivo and in vivo data show the lymphatic clearance from subjects (the blood/GNRs) injected into the subarachnoid space that might be an important mechanism of neurorehabilitation after the intracranial hemorrhages.
Here we show the interaction between the meningeal lymphatic system and the blood-brain barrier (BBB) function. In normal state, the meningeal lymphatic vessels are invisible on optical coherent tomography (OCT), while during the opening of the BBB, meningeal lymphatic vessels are clearly visualized by OCT in the area of cerebral venous sinuses. These results give a significant impulse in the new application of OCT for the study of physiology of meningeal lymphatic system as well as sheds light on novel strategies in the prognosis of the opening of the BBB related with many central nervous system diseases, such as stroke, brain trauma, Alzheimers disease, etc.
The meningeal lymphatic vessels were discovered 2 years ago as the drainage system involved in the mechanisms underlying the clearance of waste products from the brain. The blood–brain barrier (BBB) is a gatekeeper that strongly controls the movement of different molecules from the blood into the brain. We know the scenarios during the opening of the BBB, but there is extremely limited information on how the brain clears the substances that cross the BBB. Here, using the model of sound-induced opening of the BBB, we clearly show how the brain clears dextran after it crosses the BBB via the meningeal lymphatic vessels. We first demonstrate successful application of optical coherence tomography (OCT) for imaging of the lymphatic vessels in the meninges after opening of the BBB, which might be a new useful strategy for noninvasive analysis of lymphatic drainage in daily clinical practice. Also, we give information about the depth and size of the meningeal lymphatic vessels in mice. These new fundamental data with the applied focus on the OCT shed light on the mechanisms of brain clearance and the role of lymphatic drainage in these processes that could serve as an informative platform for a development of therapy and diagnostics of diseases associated with injuries of the BBB such as stroke, brain trauma, glioma, depression, or Alzheimer disease.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.