We report on an on-field CO2 sensing experiment based on a rapidly modulated optical parametric oscillator (OPO). This OPO is pumped by a mode-locked fibre laser source delivering 120 ps pulse laser with a spectral width of about 0.03 nm at a repetition frequency of 40 MHz and an average power of 5W. The output wavelength of the fibre laser pump source can be rapidly modulated resulting in a modulated mid-IR signal. This modulated signal around 2.7 μm was used for CO2 detection during a field experiment by a deported (~100m) sampling method.
A 1064 nm picosecond hybrid fiber/bulk laser delivering 85 μJ, 30 ps pulses is reported. The whole laser chain is made of a compact fibered mode-lock oscillator, pulse-picker and ytterbium doped amplifiers while high pulse energy operation is achieved thanks to a Nd:YVO4 crystal amplifier which permits to obtain MegaWatt range peak power pulses without detrimental nonlinear effects. This laser system has been designed in order to efficiently produce LIPSS on metals.
We have developed a fast wavelength modulated mid-IR source, especially designed for gas spectroscopy. The whole laser source is composed of a picosecond fiber laser emitting a spectrally narrow signal which can be modulated between 1028.3 nm and 1029.3 nm at the kHz range. This fiber laser seeds a Synchronously Pumped Optical Parametric Oscillator. This latter converts the near-IR pump (1028.3 nm) to the mid-IR region (3000-3500 nm) with equivalent modulation parameters i.e. 10 cm-1 tuning range at the kilohertz modulation frequency. This laser was combined with a photo-acoustic cell for methane detection.
We have developed a fiber-based laser source operating at 515 nm. The experimental setup is composed of a 1030 nm picosecond fiber laser, a Volume Bragg Grating (VBG) based compressor, and a Second Harmonic Generation (SHG) module. The 1030 nm picosecond fiber laser is made with an ANDi mode-lock all-fiber oscillator using a tilted Fiber Bragg Grating (FBG) for spectral filtering. A bandpass filter centered at 1030 nm permits to reduce the bandwidth of the laser to 1.5 nm. A Chirped Fiber Bragg Grating (C-FBG) based stretcher increases the pulse duration to about 90 ps for avoiding nonlinear effects during amplification. A fiber pre-amplifier followed by a double-clad 15 µm core LMA fiber amplifier pumped with a 27 W multimode diode are subsequently used. The total available power at 1030 nm is 14 Watts. SHG is achieved with a type I non-critical phase-matching (NCPM), 15 mm long, Lithium Triborate (LBO) crystal. The 515 nm signal is near diffraction limit (M2 < 1.2). The emitted average output power is 5.8 W, the pulse duration is 2.1 ps and the repetition rate is 89 MHz (SHG efficiency is 45%)
We developed a compact femtosecond fiber laser operating at 1064 nm. The laser delivers 80 fs pulses at a repetition of 43 MHz and average power of 1 Watt. It has been used in a two photon microscope for imaging a rabbit bone sample.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.