This article is a continuation of research in the field of modeling nanoparticles by various FDTD methods. This article clarifies what geometrical parameters are necessary to obtain the highest value of the elec tric field for core-shell particles with a gold (Au) core with a silicon (SiO2) shell; the other part is related to the modeling of silver nanorods (Ag). Both simulations were performed under the action of one plane polarized wave 𝜆 = 532 nm. Parameters such as the height of the rod, the radius of the cross section of the rod were varied; for the core-shell particle, the radius of the particle and the thickness of the SiO2 layer were varied. The analysis of the values of the electric (E) field component of these particles is carried out and compared with each other. The advantage of theoretical modeling by the FDTD method using our algorithm is shown. The presented data can be used as a basis for controlled chemical synthesis of spherical nanoparticles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.