The ACS-NIR spectrometer on board the Trace Gas Orbiter is currently being used to probe the atmosphere of Mars. When ACS-NIR is pointed at the Sun, it detects the spectral signature of atmospheric components present on its line of sight (LOS) as it passes through the atmosphere. The solar spectrum is directly measured when the LOS is above the atmosphere. Special observations were therefore made to construct the solar spectrum in the 0.7-1.7 μm domain. This is mainly useful for ACS-NIR calibrations and for other experiments. The observations consist in recording all the diffraction orders of ACS-NIR by continuously varying the frequency of its AOTF. Here we will present how to process this data to obtain the solar spectrum. We will first show how we get the flat field for image correction. Next, we will present how to overcome order contamination using a geometric method. We will then show how to correct the order intensity variations to obtain the solar spectrum. We will end by showing some results.
ESA’s ExoMars program comprises two missions including the Trace Gas Orbiter (TGO), launched in 2016, and a rover and surface platform, to be launched in 2022. The main scientific objectives of the program are to investigate the Martian environment and climate and search for past or present signs of life. For this purpose, a suite of three infrared spectrometers for remote sensing (Atmospheric Chemistry Suite, ACS) is in use on TGO. One of these instruments is a Fourier transform spectrometer, TIRVIM (Thermal IR V-shape Interferometer Mounting in honor of Vassili Ivanovich Moroz), operating in nadir, limb or solar occultation mode between 1.7 and 17 μm. On ExoMars22’s surface platform the spectrometer FAST (Fourier for Atmospheric Species and Temperature) will study the atmosphere and surface at the landing site in the same wavelength range as TIRVIM on TGO. This paper presents the objectives of TIRVIM and FAST. It summarizes selected results of the determination of temperature profiles and dust content in the lower atmosphere of Mars based on radiative transfer modeling of TIRVIM data. Synergetic analyses of TIRVIM spectra and InSight (NASA) in situ measurements of temperature and pressure at InSight’s landing site in Elysium Planitia enable improvements of procedures to retrieve parameters from TIRVIM observations. First results on surface temperature obtained from these different data sets together with the measurements to be expected in the future from FAST offer a unique opportunity to compare in situ and IR remote sensing measurements.
We describe a 1-inch aperture pointing system realized with a rope transmission driven by geared stepper motors for operation at the surface of Mars. The system is intended to serve in the Fourier-transform spectrometer to observe both the sun through the atmosphere and the thermal emission of the atmosphere. The scanner covers a full 2π field of view (the upper hemisphere). The accuracy of 0.1 mrad (~21 arcsec) for the sun tracking is achieved using an automatic control system with an IR array sensor (3232) in the loop. The optics of the pointing system consists of three flat mirrors and a germanium inlet window. The mass of the subsystem does not exceed 0.8 kg. The design accounts for the necessity of dust protection in the Martian environment. The effect of a finite accuracy of the pointing and tracking on the instrument signal to noise ratio is modeled.
Infrared Fourier-transform spectrometers (FTIR) onboard of the planetary missions are commonly used for the thermal sounding of the atmosphere and retrieval of aerosol profiles. To derive a calibrated spectrum of the target source, one needs three separate measurements: the target source itself and two calibration measurements of sources with known emissivity and temperature. An overview of the design of a compact in-built calibration source (a blackbody) emitting at 210-330 K for a spaceborne FTIR instrument is presented. Mechanically it is an aluminum structure matching the aperture of the instrument. The emissivity depends on its surface relief and finish. Four different types of surface shape are considered. The best-achieved emissivity is better than 0.99 (at 15 μm). The optimal placement of heaters allowing for minimal thermal non-uniformity (0.1 K) across the aperture is found. The accuracy of the thermal control is also ~0.1 K. We discuss the thermal control system and its characteristics (accuracy and drift). The proposed design accounts for a minimum mass applicable to the space instrumentation. For a one-inch aperture, the mass is 0.12 kg. The expected accuracy of the instrument calibrated with the designed blackbody is estimated.
An interferometer is an essential subsystem of the Fourier-transform spectrometer (FTS). We describe an FTS instrument to operate at the surface of Mars based on a Michelson interferometer with hollow retroreflectors. The instrument will operate in two different regimes, observing the solar disc through the atmosphere to measure trace gases, and measuring the thermal emission from the atmosphere to study the planetary boundary layer (PBL). The interferometer has an aperture of 1 inch, operates in the spectral range 1.7-17 μm, and features low mass and volume (≤1 kg with all necessary subsystems). Beam splitter and compensator are made of potassium bromide (KBr). A single-axis robot with stepper motor drive provides a linear movement of the retroreflector (the speed stability is about 2%) and enables a maximal optical path difference (MOPD) of 15 cm. A reference channel with a distributed-feedback laser diode (0.76 μm) and a photodiode (Si) supports the interferogram sampling and the speed stabilization loop. The time to measure one interferogram with a best spectral resolution of about 0.05 cm–1 is 500 s (the sun tracking regime). In the thermal sounding regime, one measurement of a two-side interferogram (with the spectral resolution of ~1 cm–1) takes less than 1 min. Laboratory calibrations with a black body and a laser confirm the design parameters of the instrument.
KEYWORDS: Calibration, Aerosols, Spectrometers, Mars, Atmospheric particles, Spectral resolution, Black bodies, Infrared radiation, Signal to noise ratio
Atmospheric Chemistry Suite (ACS) is a part of Russian contribution to ExoMars Trace Gas Orbiter (TGO) ESA-Roscosmos mission. ACS includes three separate infrared spectrometers (MIR, NIR and TIRVIM) with a different spectral coverage and targeted to the different science goals. ACS TIRVIM is a Fourier-transform spectrometer based on 2-inch double pendulum interferometer. It operates in the spectral range of 1.7-7 μm with the best spectral resolution 0.13 cm-1 for solar occultation (SO) mode and 0.8 cm-1 for nadir mode. In nadir mode TIRVIM is purposed to thermal sounding of the Martian atmosphere and aerosol properties retrieval. In SO mode TIRVIM is dedicated to trace gases measurements complementing to ACS MIR. After successful launch of ExoMars TGO on 16 April 2016 there were three time slots for turning on science instruments during cruise phase to execute necessary checks and calibration measurements. In March 2018 the nominal science orbit was reached after cruise and aerobraking phases. The first results of TIRVIM data processing show high performance of the instrument.
Fourier-spectrometer TIRVIM is a part of ACS spectral complex aboard Mars-Express orbiter spacecraft. TIRVIM spectral range is 2–16 micron. It can operate as a spectrometer – with the Sun as a standard radiation source (“occultation” mode) or as a spectro-radiometer (“nadir” mode). In occultation mode the spectral resolution is 0.2 cm-1, in nadir mode – 1.3 cm-1. The main scientific objective of the occultation mode is to search for atmosphere minor constituents, of the nadir mode – to monitor the Mars atmosphere vertical thermal profile (by 15-micron CO2 band). The occultation mode is self-calibrated. For absolute calibration in the nadir mode TIRVIM has a rotating inlet flat mirror (single-axis foreoptic) able to point the FOV (2º) to nadir, space, built-in black-body or to another direction in the plane. TIRVIM mass is 12 kg, the power consumption is 15 W.
The atmospheric chemistry suite (ACS) package is a part of the Russian contribution to the ExoMars ESA-Roscosmos mission. ACS consists of three separate infrared spectrometers, sharing common mechanical, electrical, and thermal interfaces. The near-infrared (NIR) channel is a versatile spectrometer for the spectral range of 0.7–1.6 μm with a resolving power of ∼20,000. The instrument employs the principle of an echelle spectrometer with an acousto-optical tunable filter (AOTF) as a preselector. NIR will be operated in nadir, in solar occultations, and possibly on the limb. Scientific targets of NIR are the measurements of water vapor, aerosols, and dayside or nightside airglows. The mid-infrared (MIR) channel is a cross-dispersion echelle instrument dedicated to solar occultation measurements in the range of 2.2–4.4 μm targeting the resolving power of 50,000. MIR is dedicated to sensitive measurements of trace gases. The thermal infrared channel (TIRVIM) is a 2-inch double pendulum Fourier-transform spectrometer for the spectral range of 1.7–17 μm with apodized resolution varying from 0.2 to 1.6 cm−1. TIRVIM is primarily dedicated to the monitoring of atmospheric temperatures and aerosol states in nadir. The present paper describes the concept of the instrument, and in more detail, the optical design and the expected parameters of its three parts channel by channel.
The ACS package for ExoMars Trace Gas Orbiter is a part of Russian contribution to ExoMars ESA-Roscosmos mission. On the Orbiter it complements NOMAD investigation and is intended to recover in much extent the science lost with the cancellation of NASA MATMOS and EMCS infrared sounders. ACS includes three separate spectrometers, sharing common mechanical, electrical, and thermal interfaces. NIR is a versatile spectrometer for the spectral range of 0.7-1.6 μm with resolving power of ~20000. It is conceived on the principle of RUSALKA/ISS or SOIR/Venus Express experiments combining an echelle spectrometer and an AOTF (Acousto-Optical Tuneable Filter) for order selection. Up to 8 diffraction orders, each 10-20 nm wide can be measured in one sequence record. NIR will be operated principally in nadir, but also in solar occultations, and possibly on the limb. MIR is a high-resolution echelle instrument exclusively dedicated to solar occultation measurements in the range of 2.2-4.4 μm targeting the resolving power of 50000. The order separation is done by means of a steerable grating cross-disperser, allowing instantaneous coverage of up to 300-nm range of the spectrum for one or two records per second. MIR is dedicated to sensitive measurements of trace gases, approaching MATMOS detection thresholds for many species. TIRVIM is a 2- inch double pendulum Fourier-transform spectrometer for the spectral range of 1.7-17 μm with apodized resolution varying from 0.2 to 1.6 cm-1. TIRVIM is primarily dedicated to monitoring of atmospheric temperature and aerosol state in nadir, and would contribute in solar occultation to detection/reducing of upper limits of some components absorbing beyond 4 μm, complementing MIR and NOMAD. Additionally, TIRVIM targets the methane mapping in nadir, using separate detector optimized for 3.3-μm range. The concept of the instrument and in more detail the optical design and the expected parameters of its three parts, channel by channel are described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.