We show here that Cd(Zn)O can be deposited on GaAs by MOCVD forming nanoparticles with a hemispherical shape. These nanoparticles maintain the key characteristics from a CdO film: very high plasma frequency and very low losses, hence retaining the strong plasmonic character. As a result of this, when illuminated with infrared light, two localized surface plasmon (LSP) modes are excited at 2.7 and 5.3 microns, and the electric field is heavily amplified in the underlying GaAs substrate. Moreover, their hemispherical geometry allows them to partially change the orientation of the field, creating a component perpendicular to the surface. We prove the coupling between the CdO LSPs and the intersubband transitions from a multiple QW structure, where the absorption is largely enhanced for p-polarized electric fields, and it is observed even under normal incidence conditions.
The unavoidable presence of the wetting layer (WL) in Stranski-Krastanov quantum dots (QD) has typically a negative impact on the performance of QD solar cells. In this work, a simple method to engineer the WL of InAs/GaAs QD solar cells is investigated. In particular, we show that covering the QDs at high GaAs capping rates reduces In-Ga intermixing and, therefore, In redistribution from the QDs to the WL. This results not only in larger QDs, but also in thinner WLs, with larger quantum confinement energies and reduced potential barriers for electrons and holes. Carrier trapping by the WLs and subsequent recombination is therefore reduced, resulting in larger photocurrent values of the QD solar cells under short circuit conditions.
Dilute nitride GaAsSbN is an ideal candidate to form the 1-1.15 eV lattice-matched sub-cell that would significantly enhance the performance of 3- and 4-junction solar cells. However, growth problems inherent to this quaternary alloy lead typically to a poor crystal quality that limits its applicability. Better compositional control and crystal quality have been recently reported by growing the material as a GaAsSb/GaAsN superlattice, because of the spatial separation of Sb and N that avoid miscibility problems. Moreover, these structures provide bandgap tunability trough period thickness. Here we study the performance of lattice-matched 1.15 eV GaAsSb/GaAsN type-II superlattice p-i-n junction solar cells with different period thickness and compare them with the bulk and GaAsSbN/GaAs type-I superlattice counterparts. We demonstrate carrier lifetime tunability through the period thickness in the type-II structures. However, the long carrier lifetimes achievable with periods thicker than 12 nm are incompatible with a high carrier extraction efficiency under short-circuit conditions. Only superlattices with thinner periods and short carrier lifetimes show good solar cell performance. Quantum kinetic calculations based on the non-equilibrium Green’s function (NEGF) formalism predict a change in transport regime from direct tunneling extraction to sequential tunneling with sizable thermionic emission components when passing from 6 nm to 12 nm period length, which for low carrier lifetime results in a decrease of extraction efficiency by more than 30%.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.