A high-performance silicon waveguide-based electro-optical 3-to-8 decoder is proposed in this work. Generic 500x220 nm dimensions of the waveguide provide compatibility with other devices and circuits. The length of the active region is 4.5 microns. The n-to-m electro-optical switching circuits utilize both forward and reversed bias NOT gates with a voltage input of -2.5 V and 2.5 V, for logic zero and logic high, respectively. The 3-to-8 decoder showed an input power of the optical signal of 1.26 mW, which is distributed within the circuit, resulting in the maximum output power of approximately 0.3 mW on each of the 8 terminals. 20000 dB/cm mode loss is achieved with a logic input controlled by ±2.5 V. Results show that a data-rate of up to 100 Gbit/s is achieved.
In this work, we investigate an optical accelerometer utilizing single-mode Si/SiO2 waveguides at 1550 nm as a displacement sensing unit. The device is based on quad beam configuration, made of a fixed frame and a mass, moving within a limited range along vertical direction. Three straight Si/SiO2 waveguides are placed aligned along the central axes of the accelerometer, two on both ends on the frame and one on the mass, such that the displacement of mass leads to a drop of the coupled light intensity. When the mass is at rest, the intensity of the guided mode is at its highest value. Acceleration is then measured by monitoring the intensity modulation. Lateral dimensions of the waveguides are similar, where the height and width are 200 nm and 500 nm, respectively. The effective index of single mode Si/SiO2 waveguides (neff = 2.3550 at 1550 nm) is calculated using Finite Difference Eigenmode (FDE) method. The field profile of fundamental TE mode is to a good approximation given by Gaussian field distribution. The correlation of guided light intensity and the mass displacement was obtained numerically using mode-coupling theory. We show that our configuration is highly sensitive, drastic intensity drop (100 dB) happens at mass-frame misalignment within ±7 μm and displacement by 3 μm causes intensity decrease of 10.8 dB. Thus, design of CMOS-compatible miniature silicon photonic accelerometers with inherent properties such as multiplexability and immunity to external electro-magnetic fields are promising candidates for low cost real-time vibration monitoring sensors applicable in harsh environments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.