Melanoma is the deadliest skin cancer with the fastest rising incidence rate in the United States. The most important predictor of melanoma patient survival is the volume of invasive tumor at the initial biopsy. The appearance of in-situ melanoma in epidermis and invasive melanoma in dermis, which invades the underlying soft tissue and drives mortality, is often visually similar. We propose a novel two-stage method to segment invasive melanoma. The first stage computes two segmentation maps, one for tumor vs non-tumor and one for dermis vs epidermis. These two segmentation prediction maps of tumor and epidermis from the first stage combine to yield invasive melanoma predictions. Our method utilizes multiple resolutions and downscaling to increase information passed to the model and to improve model accuracy. Using an HRNet+OCR model for both epidermis and melanoma segmentation in our proposed two-stage system results in a marked improvement of F1 score (mIoU) to 0.44 (0.64) as compared to the current state-of-the-art of 0.14 (0.53).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.