Astronomical mirror coatings are often metals protected by multiple layers of dielectrics. Varying the thickness and layering of dielectrics causes a significant dependence on the polarization properties (retardance, diattenuation, and depolarization) of reflected light across all wavelengths. Polarization further varies with angle of incidence and mirror shape. In models predicting polarization performance, assumptions on the properties and uniformity of coated optical surfaces are usually made. Here, we present how a non-uniformly applied coating affects polarization performance and causes depolarization across an aperture. We then assess the differences from assuming a uniform surface. Using the NSF’s Daniel K. Inouye Solar Telescope as an example of a complex, many-optic, articulated system, we also compare depolarization effects of mirror coating non-uniformity to other known sources of systematic polarization error on DKIST.
Astronomical instruments greatly improve wavelength multiplexing capabilities by using beam splitters. In the case of the 4-m National Science Foundation’s Daniel K. Inouye Solar Telescope (DKIST) solar telescope, over 70 W of optical power is distributed simultaneously to four instruments, each with multiple cameras. Many DKIST observing cases require simultaneous observations of many narrow bandpasses combined with an adaptive optics system. The facility uses five dichroic optical stations to allow at least 11 cameras and two wavefront sensors to simultaneously observe ultraviolet to infrared wavelengths with flexible reconfiguration. The DKIST dichroics required substantial development to achieve very tight specifications over very large apertures of 290 mm diameter. Coating spectral variation occurs over <1 nm wavelength, comparable with instrument bandpasses. We measure retardance spectral variation of up to a full wave and diattenuation varying over ±10 % per nm. Spatial variation of Mueller matrix elements for coatings in both transmission and reflection requires careful metrology. We demonstrate coatings from multiple vendors exhibit this behavior. We show achievement of 5-nm root mean square (RMS) reflected wavefront and 24-nm RMS power with coatings over 8 μm thick. We show mild impacts of depolarization and spectral variation of polarization on modulation efficiency caused by the dichroic coatings. We show an end-to-end system polarization model for the visible spectropolarimeter instrument, including the dichroics, grating, analyzer, and all coated optics. We show detailed performance for all DKIST dichroics for community use in planning future observations.
Astronomical spectropolarimeters require high accuracy polarizers with large aperture and stringent uniformity requirements. In solar applications, wire grid polarizers are often used as performance is maintained under high heat loads and temperatures over 200°C. DKIST is the NSF’s new 4-m aperture solar telescope designed to deliver accurate spectropolarimetric solar data across a wide wavelength range, covering a large field of view simultaneously using multiple facility instruments. Polarizers at 120 mm diameter are used to calibrate DKIST instruments but vary spatially in transmission, extinction ratio, and orientation of maximum extinction. We combine new spatial and spectral metrology for polarizers and retarders to simulate the accuracy losses with field angle and wavelength caused simultaneously by spatial variation of several optical parameters including beam decenter from misalignments. We also present testing of a new crystal sapphire substrate polarizer designed and fabricated to improve DKIST long wavelength calibrations. We assess spatial thickness variation of sapphire and fused silica wafer substrates using spectral interference fringes.
Daniel K. Inouye Solar Telescope (DKIST) is designed to deliver accurate spectropolarimetric solar data across a wide wavelength range, covering a large field of view simultaneously using multiple facility instruments for solar disk, limb, and coronal observations. We show successful design and implementation of National Solar Observatory Coudé Laboratory Spectropolarimeter, a custom metrology tool for efficient continuous broadband polarization calibration of the telescope mirrors through a coudé laboratory focus. We compare multiple fitting techniques for the 10 to >140 variable DKIST system polarization models. We compare results with the first DKIST solar calibration observations and find small thermally forced retardance changes of ±0.2 deg and ±0.5 deg for two separate SiO2 retarders. Modulation matrices derived are stable to < ± 0.01 per element during the first on-Sun calibration tests. We achieve good fit agreement to our metrology-based model over a 390- to 1600-nm bandpass. The solutions are robust and efficient using only 10 input Stokes vectors from elliptical calibration retarders. We developed a custom polarizer assembly used with metrology tools to orient the DKIST polarization coordinates to better than 0.1-deg clocking angle.
Interference fringes are a major source of systematic error in astronomical spectropolarimeters. We apply the Berreman formalism with recent spatial fringe aperture averaging estimates to design and fabricate new fringe-suppressed polarization optics for several Daniel K. Inouye Solar Telescope (DKIST) use cases. We successfully performed an optical contact bond on a 120-mm-diameter compound crystal retarder for calibration with wavelength-dependent fringe suppression factors of one to three orders of magnitude. Special rotational alignment procedures were developed to minimize spectral oscillations, which we show here to represent our calibration stability limit under retarder thermal perturbation. We developed a fabrication technique to deliver low beam deflection for our large aperture polycarbonate (PC) retarders. Modulators are upgraded in two DKIST instruments with minimal beam deflection and bandpass-optimized antireflection coatings for fringe suppression factors of hundreds. We confirm that PC retarders do fringe as expected when low deflection is achieved. We show that increased retardance spatial variation from PC does not degrade modulation efficiency.
The Daniel K. Inouye Solar Telescope (DKIST) is designed to deliver accurate spectropolarimetric calibrations across a wide wavelength range and large field of view for solar disk, limb, and coronal observations. DKIST instruments deliver spectral resolving powers of up to 300,000 in multiple cameras of multiple instruments sampling nanometer scale bandpasses. We require detailed knowledge of optical coatings on all optics to ensure that we can predict and calibrate the polarization behavior of the system. Optical coatings can be metals protected by many dielectric layers or several-micron-thick dichroics. Strong spectral gradients up to 60 deg retardance per nanometer wavelength and several percent diattenuation per nanometer wavelength are observed in such coatings. Often, optical coatings are not specified with spectral gradient targets for polarimetry in combination with both average- and spectral threshold-type specifications. DKIST has a suite of interchangeable dichroic beam splitters using up to 96 layers. We apply the Berreman formalism in open-source Python scripts to derive coating polarization behavior. We present high spectral resolution examples on dichroics where transmission can drop 10% with associated polarization changes over a 1-nm spectral bandpass in both mirrors and dichroics. We worked with a vendor to design dichroic coatings with relatively benign polarization properties that pass spectral gradient requirements and polarization requirements in addition to reflectivity. We now have the ability to fit multilayer coating designs which allow us to predict system-level polarization properties of mirrors, antireflection coatings, and dichroics at arbitrary incidence angles, high spectral resolving power, and on curved surfaces through optical modeling software packages. Performance predictions for polarization at large astronomical telescopes require significant metrology efforts on individual optical components combined with system-level modeling efforts. We show our custom-built laboratory spectropolarimeter and metrology efforts on protected metal mirrors, antireflection coatings, and dichroic mirror samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.