Luminescent down-shifting (LDS) is a simple, powerful tool for increasing the range of solar irradiance that can be efficiently utilized by photovoltaic devices. We developed an optical model to simulate the ideal optical properties (absorbance, transmittance, luminescence quantum yield, etc.) of LDS layers for solar cells. We evaluated which quantum efficiencies and which optical densities are necessary to achieve an improvement in solar cell performance. In particular we considered copper indium gallium diselenide (CIGS) devices. Our model relies on experimentally measured data for the transmission and emission spectra as well as for the external quantum efficiency (EQE) of the solar cell. By combining experimental work with this optical model, we aim to propose an environmentally friendly technology for coating thick (300-500 μm), efficient luminescent down-shifting layers. These layers consist of polyvinyl butyral (PVB) and organic UV-converting fluorescent dyes. The absorption coefficients and luminescence quantum yields of the dyes were determined both in a solution of the solvent benzyl alcohol and in the solid polymer layers. This data shows that the dyes retain luminescence quantum yields of approximately 90% after solution-processing. The produced layers were then applied to CIGS solar cells, thereby improving the EQE of the devices in the UV region. At a wavelength of 390 nm, for instance, the EQE increased from 18% to 53%. These values closely agree with the theoretically calculated ones. The proposed technology, thus, provides a pathway toward efficient, fully solutionprocessable encapsulated photovoltaic modules.
We studied the optical properties of polymer layers filled with phosphor particles in two aspects. First, we used two different polymer binders with refractive indices n = 1.46 and n = 1.61 (λ = 600 nm) to decrease Δn with the phosphor particles (n = 1.81). Second, we prepared two particle size distributions D50 = 12 μm and D50 = 19 μm. The particles were dispersed in both polymer binders in several volume concentrations and coated onto glass with thicknesses of 150 - 600 μm. We present further a newly developed optical model for simulation and optimization of such luminescent down-shifting (LDS) layers. The model is developed within the ray tracing framework of the existing optical simulator CROWM (Combined Ray Optics / Wave Optics Model), which enables simulation of standalone LDS layers as well as complete solar cells (including thick and thin layers) enhanced by the LDS layers for an improved solar spectrum harvesting. Experimental results and numerical simulations show that the layers of the higher refractive index binder with larger particles result in the highest optical transmittance in the visible light spectrum. Finally we proved that scattering of the phosphor particles in the LDS layers may increase the overall light harvesting in the solar cell. We used numerical simulations to determine optimal layer composition for application in realistic thin-film photovoltaic devices. Surprisingly LDS layers with lower measured optical transmittance are more efficient when applied onto the solar cells due to graded refractive index and efficient light scattering. Therefore, our phosphor-filled LDS layers could possibly complement other light-coupling techniques in photovoltaics.
In this contribution we discuss luminescent down-shifting (LDS) systems consisting of a polymer matrix filled with phosphor particles. It is an elegant approach to make a use of potentially destructive or otherwise wasted high energy photons and diminish charge carrier losses caused by thermalization in photovoltaics. Sub-micron and micron sized particles of strontium aluminate doped with Eu2+ and strontium carbonate doped with Eu3+ ions are chosen for the application due to their suitable absorption in UV spectral region. These particles exhibit strong luminescence in the visible range between 520 and 650 nm. The systems are carefully designed to meet critical optical requirements such as high transparency in the visible spectrum as well as sufficient absorption of UV light. They are coated on quartz glass substrates (20 x 20 x 1 mm) and can be easily laminated to different kinds of solar cells without any modification to well-established device fabrication processes. Optical characterization further confirms that particles of a few microns in size generate strong light scattering in layers due to the sizes slightly larger than visible light wavelengths. Dried thick layers of 20 to 100 μm are tested with CIGS and organic cells. The concept of light conversion is experimentally proven. However, optical losses cause a reduction in the overall performance of the tested devices. Possible ways to bring down the amount of light scattering and, thus, to increase optical transmission for the studied system are also addressed, and are a subject of future research.
Efficient transparent light converters have received lately a growing interest from optical device industries (LEDs, PV,
etc.). While organic luminescent dyes were tested in PV light-converting application, such restrictions as small Stokes
shifts, short lifetimes, and relatively high costs must yet be overcome. Alternatively, use of phosphors in transparent
matrix materials would mean a major breakthrough for this technology, as phosphors exhibit long-term stability and are
widely available. For the fabrication of phosphor-filled layers tailored specifically for the desired application, it is of
great importance to gain deep understanding of light propagation through the layers, including the detailed optical
interplay between the phosphor particles and the matrix material. Our measurements show that absorption and
luminescent behavior of the phosphors and especially the scattering of light by the phosphor particles play an important
role. In this contribution we have investigated refractive index difference between transparent binder and phosphors.
Commercially available highly luminescent UV and near-UV absorbing μm-sized powder is chosen for the fabrication of
phosphor-filled layers with varied refractive index of transparent polymer matrix, and well-defined particle size
distributions. Solution-processed thick layers on glass substrates are optically analyzed and compared with simulation
results acquired from CROWM, a combined wave optics/ray optics home-built software. The results demonstrate the
inter-dependence of the layer parameters, prove the importance of careful optimization steps required for fabrication of
efficient light converting layers, and, thus, show a path into the future of this promising approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.