Characterizing the spatial resolution and uncertainties related to a tomographic reconstruction are crucial to assess its quality and to assist with the decision-making process. Bayesian inference provides a general framework to compute conditional probability density functions of the model space. However, analytic expressions and closed-form solutions for the posterior probability density are limited to linear inverse problems such as straight- ray tomography under the assumption of a Gaussian prior and data noise. Resolution analysis and uncertainty quantification is significantly more complicated for non-linear inverse problems such as full-waveform inversion (FWI), and sampling-based approaches such as Markov-Chain Monte-Carlo are often impractical because of their tremendous computational cost. However, under the assumption of Gaussian priors in model and data space, we can exploit the machinery of linear resolution analysis and find a Gaussian approximation of the posterior probability density by using the Hessian of the regularized objective functional. This non-linear resolution analysis rests on (i) a quadratic approximation of the misfit functional in the vicinity of an optimal model; (ii) the idea that an approximation of the Hessian can be built efficiently by gradient information from a set of perturbed models around the optimal model. The inverse of the preconditioned Hessian serves as a proxy of the posterior covariance from which space-dependent uncertainties as well as correlations between parameters and inter-parameter trade-offs can be extracted. Moreover, the framework proposed here also allows for inter- comparison between different tomographic techniques. Specifically, we aim for a comparison between tissue models obtained from ray tomography and models obtained with FWI using ultrasound data.
Ultrasound computed tomography (USCT) is a promising imaging modality for breast cancer screening. Two challenges commonly arising in time-of-flight USCT are (1) to efficiently deal with large data sets and (2) to effectively mitigate the ill-posedness for an adequate reconstruction of the model. In this contribution, we develop an optimization strategy based on a stochastic descent method that adaptively subsamples the data, and analyze its performance in combination with different sparsity-enforcing regularization techniques. The algorithms are tested on numerical as well as real data obtained from synthetic phantom scans of the previous USCT Data Challenges.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.