In this paper, rate-dependent switching effects of ferroelastic materials are studied by means of a micromechanically
motivated approach. The onset of domain switching is thereby initiated as soon as a related
reduction in energy per unit volume exceeds a critical value. Subsequent nucleation and propagation of
domain walls during switching process are incorporated via a linear kinetics theory. Along with this micromechanical
model, intergranular effects are accounted for by making use of a probabilistic ansatz; to be
specific, a phenomenologically motivated Weibull distribution function is adopted. In view of finite-element-based
simulations, each domain is represented by a single finite element and initial dipole directions are
randomly oriented so that the virgin state of the particular bulk ceramics of interest reflects an un-poled
material. Based on a staggered iteration technique and straightforward volume averaging, representative
stress versus strain hysteresis loops are computed for various loading amplitudes and frequencies. Simulation
results for the rate-independent case are in good agreement with experimentally measure data reported
in the literature and, moreover, are extended to rate-dependent computations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.