Photoinduced changes in luminescent and photoelectrical properties of the hybrid structure based on CdSe/ZnS QDs and
multilayer graphene nanobelts were studied. It was shown that an irradiation of the structures by 365 nm mercury line in
doses up to 23 J led to growth of QD luminescent quantum yield and photocurrent in the QD/graphene structures. This
confirms the proximity of the rates of the QD luminescence decay and energy/charge transfer from QDs to graphene, and
opens an opportunity to photoinduced control of the photoelectric response of the graphene based hybrid structures with
semiconductor quantum dots.
The interest in quantum dots fluorescence is connected with the problem of implementing new protective luminescence markers and labels. We studied the luminescence spectra of multi-sized quantum dots fluorescent labels and quantum dots fluorescent labels with different matrix pore size.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.