Progress in biomedical imaging depends on the development of probes that combine low toxicity with high sensitivity, resolution, and stability. Toward that end, a new class of highly fluorescent core-shell silica nanoparticles with narrow size distributions and enhanced photostability, known as C dots, provide an appealing alternative to quantum dots. Here, C dots are evaluated with a particular emphasis on in-vivo applications in cancer biology. It is established that C dots are nontoxic at biologically relevant concentrations, and can be used in a broad range of imaging applications including intravital visualization of capillaries and macrophages, sentinel lymph node mapping, and peptide-mediated multicolor cell labeling for real-time imaging of tumor metastasis and tracking of injected bone marrow cells in mice. These results demonstrate that fluorescent core-shell silica nanoparticles represent a powerful novel imaging tool within the emerging field of nanomedicine.
We report on monodisperse fluorescent core-shell silica nanoparticles (C dots) with enhanced brightness and photostability as compared to parent free dye in aqueous solution. Dots containing either tetramethylrhodamine or 7-nitrobenz-2-oxa-1,3-diazole dyes with diameters ranging from tens of nanometers to microns are discussed. The benefits of the core-shell architecture are described in terms of enhanced fluorescent yield of the fluorophores in the quasi-solid-state environment within the particle as compared with parent free dye in water. Several applications of these particles in the fields of photonics and the life sciences are discussed. Specifically, fluorescent core-shell silica nanoparticles are investigated as an active medium for photonic building blocks assembled on zinc sulfide-based seed particles. Initial assembly results for these composite raspberry structures are shown. Finally, applications in the life sciences are explored, including targeting of specific antibody receptors using these single-emission nanoparticles. We expand on single-emission core-shell architecture to incorporate environmentally-sensitive fluorophores to create quantitative ratiometric nanoscale sensors capable of interrogating chemical concentrations on the sub-cellular to molecular levels and demonstrate initial results of intracellular pH imaging. The concept of a single particle laboratory (SPL) is introduced as an active investigator of its environment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.