Metrology plays a crucial role in semiconductor manufacturing by providing accurate and precise measurement and characterization of critical parameters. With the development of high-resolution extreme ultraviolet lithography (EUVL) processes, critical dimensions are shrinking to sub-10 nm. Resist materials encounter the challenge of providing heightened sensitivity and a handle on exacerbating stochastic variations. A comprehensive understanding of the chemical profile of the latent image is pivotal for mitigating stochastic effects and optimizing pattern quality. However, the subtle differences in chemistry between the exposed and unexposed regions of the resists make it extremely challenging to characterize the latent images with sub-nanometer precision. Here, we develop the metrology with critical-dimension resonant soft X-ray scattering (CD-RSoXS) to probe the chemical profiles of latent images stored in resist after exposure. The combination of absorption spectroscopy and enhanced scattering contrast makes it possible to characterize the subtle structural and chemical variations in the latent image. Moreover, the results of the measurements are compared with the simulations with a finite element method–based Maxwell solver to extract a detailed profile of the latent and developed images. We demonstrate that the CD-RSoXS technique can provide valuable insights into the high spatial resolution and local chemical sensitivity simultaneously, which is crucial to understanding the resolution limits and stochastic effects in EUVL processes.
X-ray fluorescence techniques in special operation modes can provide valuable quantitative insights for semiconductor related applications and can be made compatible to typical sizes of homogeneously structured metrology pads. As their dimensions are usually in the order of several 10 μm per direction, it must be ensured that no adjacent regions are irradiated or that no x-ray fluorescence radiation from adjacent areas reaches the detector. As this can be realized by using small excitation beams, a multitude of information can be retrieved from such XRF data. In addition to elemental composition, including sensitivity to sub-surface features, one can derive quantitative amounts of material and even dimensional properties of the nanostructures under study. Here, we show three different approaches for studies related to semiconductor applications that are capable to be performed on real world dies with commonly sized metrology pads.
The interaction of matter and light can be described based on optical constants, shortly called δ&β. These constants provide the fundamental basis for the design of any optical system. In the Extreme Ultraviolet (EUV) spectral range, however, the existing data for many materials or compounds is very sparse, non-existent or exhibit considerable discrepancies between different sources. This is further complicated since the scaling effects stipulate the optical response of a thin film to differ from bulk. Oxidation, impurities or interdiffusion significantly affect the optical response of a system to EUV radiation. For this reason, the Physikalisch-Technische Bundesanstalt (PTB) is establishing a new database in cooperation with other European partners. This database, designated as the Optical Constants Database (OCDB) can be accessed online freely (OCDB.ptb.de). This data collection shall support further development of various fields from new metrological techniques, like EUV scatterometry to computational lithography in the EUV. This is demonstrated exemplarily here by the interplay between δ&β and the dimensional parameters with respect to a structured TaTeN EUV photomask. It is equally important either direction, to derive structure parameters from the measured EUV scattering as vice versa to predict the EUV response from the geometrical structure. In addition, the impact of varying δ and β on the expected imaging performance will be investigated by simulating typical lithographic image metrics like Critical Dimension (CD), best focus position, image contrast (NILS) and non-telecentricity for the imaging of through pitch L/S and 16 nm vertical Lines with 32 nm pitch in a NA=0.55 scanner for TaTeN mask absorber as typical representatives of high-k absorber materialsand as an example of the effect on imaging simulation.
Any modeling of an interaction between photons and matter is based on the optical parameters. The determination of these parameters, also called optical constants or refractive indices, is an indispensable component for the development of new optical elements such as mirrors, gratings, or lithography photomasks. Especially in the extreme ultraviolet (EUV) spectral region, existing databases for the refractive indices of many materials and compositions are inadequate or are a mixture of experimentally measured and calculated values from atomic scattering factors. Synchrotron radiation is of course ideally suited to verify such material parameters due to the tuneability of photon energy. However, due to the large number of possible compounds and alloys, the development of EUV laboratory reflectometers is essential to keep pace with the development of materials science and allow for inline or on-site quality control. Additionally, optical constants are also essential for EUV metrology techniques that aim to achieve dimensional reconstruction of nanopatterned structures with sub-nm resolution. For this purpose, we studied a TaTeN grating created on an EUV Mo/Si multilayer mirror, to mimic a novel absorber EUV photomask. We present here a first reconstruction comparison of these structures, measured by EUV scatterometry at the electron storage ring BESSYII and with a laboratory setup of a spectrally-resolved EUV reflectometer developed at RWTH Aachen University. Both approaches differ in several aspects reaching from setup size to spectral quality (brilliance, bandwidth and coherence) as well as the measured and simulated data.
The increasing complexity and decreasing sizes of nanostructures in microelectronic devices challenge the existing metrology methods. Moreover, as the dimensions of nanostructures continue to decrease, the overall effect of imperfections increases. For lithographic lamellar gratings, the most characteristic type of roughness is lineedge roughness, which affects the uniformity of the line edge of the line. Grazing incidence X-Ray fluorescence (GIXRF) is a non-destructive, ensemble and element sensitive method with high sensitivity to the line shapes of lamellar nanostructures. However, the effect of line-edge roughness on the angular distribution of the GIXRF is unknown. Here, the effect of line-edge roughness of lamellar gratings on the GIXRF intensity is investigated using a series of test samples with different artificial line-edge roughness profiles. We observed that the angular distribution of the GIXRF intensity is affected by the roughness.
The characterization of nanostructures and nanostructured surfaces with high sensitivity in the sub-nm range has gained enormously in importance for the development of the next generation of integrated electronic circuits. A reliable and non-destructive characterization of the material composition and dimensional parameters of nanostructures, including their uncertainties, is strongly required. Here, an optical technique based on grazing incidence X-ray fluorescence measurements is proposed. The reconstruction of a lamellar nanoscale grating made of Si3N4 is presented as an example. This technique uses the X-ray standing wave field, which arises due to interference between the incident and the reflected radiation, as nanoscale gauge. This enables the spatial distribution of the specific elements to be reconstructed using a finite-element method for the calculation of the standing wave field inside the material. For this, the optical constants for the constituent materials of the structure are needed. We derived them from soft X-ray reflectivity measurements on an unstructured part of the wafer sample. To counteract the expensive computation of the finite-element-Maxwell-solver, a Bayesian optimizer is exploited to obtain a most efficient sampling of the searched parameter space. The method is also used to determine the uncertainties of the reconstructed parameters. The homogeneity of the sample was also analyzed by evaluating several measurement spots across the grating area. For the validation of the reconstruction results, the grating line shape was measured by means of Atomic Force Microscopy.
For the reliable fabrication of the current and next generation of nanostructures it is essential to be able to determine their material composition and dimensional parameters. Using the grazing incidence X-ray fluoresence technique, which is taking advantage of the X-ray standing wave field effect, nanostructures can be investigated with a high sensitivity with respect to the structural and elemental composition. This is demonstrated using lamellar gratings made of Si3N4. Rigorous field simulations obtained from a Maxwell solver based on the finite element method allow to determine the spatial distribution of elemental species and the geometrical shape with sub-nm resolution. The increasing complexity of nanostructures and demanded sensitivity for small changes quickly turn the curse of dimensionality for numerical simulation into a problem which can no longer be solved rationally even with massive parallelisation. New optimization schemes, e.g. machine learning, are required to satisfy the metrological requirements. We present reconstruction results obtained with a Bayesian optimization approach to reduce the computational effort.
The development of efficient (In)AlGaN light emitting diodes (LEDs) in the ultraviolet B (UVB) spectral region (280nm-320nm) is essential due to their vast commercial potential. UVB LEDs are expected to not only replace traditional mercury lamps in applications such as curing of materials and phototherapy but also to establish new applications in the fields of plant growth and sensing. Although a lot of progress has been made on the performance of the UVB LEDs, the efficiency of the devices as well as the lifetime still needs to be improved. In this study the influence of the heterostructure design and package on the efficiency of UVB LEDs, grown by metalorganic vapor phase epitaxy on c-plane sapphire substrates, will be presented. Firstly, the performance of UVB AlGaN and InAlGaN multiple quantum well LEDs were studied and the influence of the material composition on the emission characteristics was analyzed. Secondly, the performance of LEDs with different electron blocking layer (EBL) designs and doping concentrations was compared. The highest internal quantum efficiency and emission power were obtained for LEDs with a gradient-like EBL, with decreasing aluminum content, because of the improved carrier injection. Additionally, the output power of the LEDs was found to increase with the p-doping level in the EBL. Finally, investigations on the influence of the metal contacts and insulator as well as the device packaging on the performance of UVB LEDs will be presented. Based on these optimizations, 315nm LEDs with output powers up to 10mW at 100mA were realized
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.