The changes in cell metabolism can affect the epigenome-modifying enzymes activity during iPSCs differentiation and thus control the functional potential of the final cell. Therefore, for therapeutic applications, the restoration of a fully functional mitochondrial network specific for the cell types derived from iPSCs will be required to support the energy and other mitochondrial factors. Recently, FLIM method allows to study the metabolic changes that accompanying cell differentiation noninvasively and without additional labels. In this study, we investigated the metabolic changes in iPSCs during neural differentiation using two-photon fluorescence microscopy and FLIM. Cellular metabolism was examined by monitoring the optical redox ratio (FAD/NAD(P)H), the fluorescence lifetime contributions of the free and bound forms of NADH and NADPH. Given that neural differentiation is also accompanied by synthetic processes and oxidative stress, this process was included in the scope of this work. We demonstrated an increased contribution of protein-bound NADH and NADPH in neuron associated with metabolic switch to oxidative phosphorylation and the biosynthetic processes or oxidative stress, respectively. We also found that the optical redox ratio FAD/NAD(P)H decreased during neural differentiation, and this was likely to be explained by the intensive lipid membrane synthesis or ROS generating and the enhanced NADPH production associated with them. The biochemical analysis was carried out to verify the metabolic status of iPSCs and their neural derivatives. Based on the data on glucose consumption, lactate and ATP amount we registered the trend to the metabolic pathways redistribution towards the oxidative phosphorylation in neuron.
The differentiation of endothelial cells from human iPSC has incontestable advantages in diseases research and therapeutic applications. However, the safe use of iPSC derivatives in regenerative medicine requires an enhanced understanding and control of factors that optimize in vitro reprogramming and differentiation protocols. Shifts in cellular metabolism associated with intracellular pH changes affect the enzymes that control epigenetic configuration, which impact chromatin reorganization and gene expression changes during reprogramming and differentiation. FLIM-based metabolic imaging of NADH and FAD is a powerful tool for measuring mitochondrial metabolic state and widely used diagnostic method for identification of neoplastic diseases, skin diseases, ocular pathologies and stem cells differentiation. Therefore, in this study, we used the potential of FLIM-based metabolic imaging and fluorescence microscopy of NADH and FAD to study the metabolic changes during iPSC differentiation in endothelial cells. The evaluation of the intracellular pH was carried out with the fluorescent pH-sensor SypHer-2 and fluorescence microscopy to obtain complete information about metabolic status of iPSC and their endothelial derivatives. Based on the FAD/NAD(P)H optical redox ratios increase and the contributions rise of the NAD(P)H fluorescence lifetime in iPSC during endothelial differentiation, we demonstrated an contribution increase of OXPHOS to cellular metabolism. Based on the shift toward more acidic intracellular pH in endothelial cell derived from iPSCs we verified their oxidative state.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.