This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In the study herein presented, the design process of a morphing winglet is reported. The research is collocated within the Clean Sky 2 Regional Aircraft IADP, a large European programme targeting the development of novel technologies for the next generation regional aircraft. The ultimate scope concerns the definition of an adaptive system for alleviating the gust loads and possibly modifying the wing load distribution in the sense of minimizing the attachment momentum (the parameter that governs the wing sizing). The proposed kinematic system is characterized by movable surfaces, each with its own domain authority, sustained by a winglet skeleton and completely integrated with a devoted actuation system. Preliminary aeroelastic investigations did already establish the robustness of the referred structural layout. This paper summarizes the activities relating to the optimization of the envisaged morphing system architecture. Moving from a standard configuration, a process is carried out to identify the lighter adaptive layout that can bear the external and internal loads without experiencing excessive stress levels for its safe operation. The most severe loads are taken into account for this process, as provided by the industrial partner, showing the reliability of the proposed solution on-board of a standard commercial aircraft. The optimization process produces interesting, sometime surprising, results that promise to reduce the weight impact of the structural skeleton for more than 40% with exclusive reference to the regions undergoing the optimization process. Such figure reduces to 15% if the complete structure is taken into account, and 12% if the skin contribution is included. The innovative outcomes are discussed in detail. Results are verified with a dedicated study that proves the consistency of the procedure and the trustworthiness of the computations.
Moving from the experience taken in many former projects as the cited ones, the authors faced the problem of installing a fully integrated adaptive trailing edge system within the existing structural skeleton of a reference aileron and defined a design strategy to take into account the aeroelastic modifications due to the installation of such a device. Besides, the architecture preserved the original function of that control surface so that it could work as a standard aileron (classical rigid tab movement) with the augmented function of a deformable, quasi-static shape. In this sense, the proposed system exhibited a double functionality: a conventional rigid aileron with augmented shape modification capability plus a continuous, slow change of the trailing edge, occurring during flight for compensating aircraft weight variation.
The research was carried out within the Italian-Canadian program MDO-505 and led to the realisation of a multifunctional aileron with two operational motor systems (one for the classical aileron working and the other for the morphing enforcement), completely integrated so that no external element was visible or affected the aerodynamics of the wing. The manufacture of this device was possible thanks to the development of a suitable design process that allowed taking into account both the structural and the aeroelastic response of the integrated architecture. This system was part of an adaptive wing section that was completed with the realisations made by the ETS of Montreal, the Quebecoise Consortium for Aerospace Research and Innovation (CRIAQ) and the IAR-NRC, supported by Bombardier and Thales Canada. The joint demonstrator was tested in the wind tunnel at the NRC facilities in Ottawa and gave confirmation of the aerodynamic, aeroelastic and structural predictions.
The paper that is herein presented deals therefore with the design process and the manufacture of an adaptive trailing edge, installed within the existing aileron system of a wing segment, to undergo wind tunnel tests. The resulting device considers the definition of the kinematic structural system, the development of the integrated actuator system, their integration and the assessment of their static and dynamic structural response, and the verification of a safe aeroelastic behavior. Numerical and experimental results are presented, achieved in lab and wind tunnel environments.
Aerodynamic computations, taking into account ideal shapes, have been performed by using both Euler and Navier- Stokes method in order to extract the wing polars for the reference and the optimal wing, implementing an ATED, deflected upwards and downwards. A comparison of the achieved results is discussed.
Considering the shape domain, a suitable interpolation procedure has been set up to obtain the wing polar envelop of the adaptive wing, intended as the set of “best” values, picked by each different polar.
At the end, the performances of the complete reference and adaptive wing are computed and compared for a symmetric, centered, leveled and steady cruise flight for a medium size aircraft. A significant fuel burn reduction estimate or, alternatively, an increased range capability is demonstrated, with margins of further improvements.
The research leading to these results has gratefully received funding from the European Union Seventh Framework Programme (FP7/2007- 2013) under Grant Agreement n° 284562.
The work is organized as follows. A finite element model of the uncontrolled, non-actuated structure is used to obtain the plant model for actuator torque and displacement control. After having characterized and simulated pure rotary actuator behavior over the structure, selected target wing shapes corresponding to rigid trailing edge rotations are achieved through both open-loop and closed-loop control logics.
View contact details
No SPIE Account? Create one