SOXS (SOn of X-Shooter) is a high-efficiency spectrograph with a mean Resolution-Slit product of about 3500 over the entire band capable of simultaneously observing the complete spectral range 350-2000 nm. It consists of three scientific arms (the UV-VIS Spectrograph, the NIR Spectrograph, and the Acquisition Camera) connected by the Common Path system to the NTT, and the Calibration Unit. During the last year, we performed the instrument AIV at the integration site in Europe. It is still ongoing. We present an overview of the flow for validation of the scientific and technical requirements, after integration of the sub-systems with some results as highlights. Further, we give an overview of the methodologies used for planning and managing the assembly of the sub-systems, their integration, and tests before the acceptance of the instrument in Europe (PAE). SOXS could be used as an example for the system engineering of an instrument of moderate complexity, with a large geographic spread of the team.
SOXS (Son Of X-Shooter) is the new single object spectrograph for the ESO New Technology Telescope (NTT) at the La Silla Observatory, able to cover simultaneously both the UV-VIS and NIR bands (350-2000 nm). The instrument is currently in the integration and test phase, approaching the Preliminary Acceptance in Europe (PAE) before shipment to Chile for commissioning. After the assembly and preliminary test of the control electronics at INAF - Astronomical Observatory of Capodimonte (Napoli), the two main control cabinets of SOXS are now hosted in Padova, connected to the real hardware. This contribution describes the final electronic cabinets layout, the control strategy and the different integration phases, waiting for the Preliminary Acceptance in Europe and the installation of the instrument in Chile.
The Son Of X-Shooter (SOXS) is a single object spectrograph, built by an international consortium for the 3.58-m ESO New Technology Telescope at the La Silla Observatory. It offers a simultaneous spectral coverage over 350-2000 nm, with two separate spectrographs. In this paper we present the status of the Near InfraRed (NIR) cryogenic echelle cross-dispersed spectrograph, in the range 0.80-2.00 μm with 15 orders, equipped with an 2k x 2k Hawaii H2RG IR array from Teledyne, working at 40K, that is currently assembled and tested on the SOXS instrument, in the premises of INAF in Padova. We describe the different tests and results of the cryo, vacuum, opto-mechanics and detector subsystems that finally will be part of the PAE by ESO.
The Son Of X-Shooter (SOXS) will be the specialized facility to observe any transient event with a flexible scheduler at the ESO New Technology Telescope (NTT) at La Silla, Chile. SOXS is a single object spectrograph offering simultaneous spectral coverage in UV-VIS (350-850 nm) and NIR (800-2000 nm) wavelength regimes with an average of R∼4500 for a 1” slit. SOXS also has imaging capabilities in the visible wavelength regime. Currently, SOXS is being integrated at the INAF-Astronomical Observatory of Padova. Subsystem- and system-level tests and verification are ongoing to ensure and confirm that every requirement and performance are met. In this paper, we report on the integration and verification of SOXS as the team and the instrument prepare for the Preliminary Acceptance Europe (PAE).
ASTRI-Horn is a 4-m class Cherenkov telescope located on Mt. Etna, Serra La Nave, Italy, operated at the Italian National Institute for Astrophysics (INAF) “M.G. Fracastoro” observing station. It is the end-to-end prototype for the nine telescopes of the ASTRI Mini-Array, a collaborative international effort led by INAF under construction at the Teide Observatory on Tenerife, in the Canary Islands. The ASTRI Mini-Array is based on nine Image Atmospheric Cherenkov Telescopes (IACTs) and it is devoted to perform astronomical observations in the high-energy gamma-ray band, above 1 TeV. ASTRI-Horn is characterized by a Schwarzschild-Couder dual-mirror optical design with a 4.3 m diameter primary mirror (M1), segmented in 18 hexagonal panels, and a monolithic 1.8 m diameter secondary mirror. The focal plane camera is based on arrays of Silicon Photo-Multiplier (SiPM) sensors, working in the wavelength band of 300-900 nm. The panels of the upgraded version of the telescope’s primary mirror are based on a multilayer dielectric coating instead of the classical Aluminium (with a thin SiO2 protection layer) coating. This multilayer coating has been designed to strongly reduce the reflectivity above 700 nm, where the diffuse night sky background dominates over the Cherenkov signal from showers and the SiPM sensors are still effective. In this work we present the computation of the average reflectivity of ASTRI-Horn primary mirror starting from reflectivity measurements performed on each panel over a wide wavelength range (200-1000 nm). This experimental average reflectivity curve will be adopted in the ASTRI-Horn simulation chain, which does not handle the reflectivity of the single panels.
SOXS (Son Of X-Shooter) is a single object spectrograph built by an international consortium for the ESO NTT telescope. SOXS is based on the heritage of the X-Shooter at the ESO-VLT with two arms (UV-VIS and NIR) working in parallel, with a Resolution-Slit product ≈ 4500, capable of simultaneously observing over the entire band the complete spectral range from the U- to the H-band. SOXS will carry out rapid and long-term Target of Opportunity requests on a variety of astronomical objects. The SOXS vacuum and cryogenic control system has been designed to evacuate, cool down and maintain the UV-VIS detector and the entire NIR spectrograph to their operating temperatures. The design chosen allows the two arms to be operated independently. This paper describes the final design of the cryo-vacuum control system, its functionalities and the tests performed in the integration laboratories.
The Cherenkov Telescope Array Observatory (CTAO) consists of three types of telescopes: large-sized (LST), mediumsized (MST), and small-sized (SST), distributed in two observing sites (North and South). For the CTA South “Alpha Configuration” the construction and installation of 37 (+5) SST telescopes (a number that could increase up to 70 in future upgrades) are planned. The SSTs are developed by an international consortium of institutes that will provide them as an in-kind contribution to CTAO. The SSTs rely on a Schwarzschild-Couder-like dual-mirror polynomial optical design, with a primary mirror of 4 m diameter, and are equipped with a focal plane camera based on SiPM detectors covering a field of view of ~9°. The current SST concept was validated by developing the prototype dual-mirror ASTRI-Horn Cherenkov telescope and the CHEC-S SiPM focal plane camera. In this contribution, we will present an overview of the SST key technologies, the current status of the SST project, and the planned schedule.
The Son Of X-Shooter (SOXS) is a single object spectrograph, built by an international consortium for the 3.58-m ESO New Technology Telescope at the La Silla Observatory. It offers a simultaneous spectral coverage over 350-2000 nm, with two separate spectrographs. In this paper we present the progress in the AIT phase of the Near InfraRed (NIR) cryogenic echelle cross-dispersed spectrograph. We describe the different AIT phases of the cryo, vacuum, opto-mechanics and detector subsystems that finally converged at the INAF-OAB premises in Merate (Italy), where the spectrograph is currently being assembled and tested, before the final assembly on SOXS.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.