Lasing properties of the two-dimensional (2D) distributed feedback (DFB) lasers can be engineered by replacing either the gain medium or periodic structures necessary for the feedback mechanism. Quasicrystals are the intermediate class between the periodic and random structures. They have high rotational symmetry and more favorable for the generation of photonic bandgap as compared to periodic structures. In our experiment, we designed a pentagonal prism for the holographic lithography to construct a long-range 10-fold rotational symmetry, which exhibits 2D quasiperiodic structures. A solution-processable colloidal quantum dots (CQDs) was spin-coated on the resultant 2D quasicrystals. An analytical model based on the cavity mode coupling effect was developed to predict the output performance of the 2D DFB CQDs photonic quasicrystals laser. The respective optically pumped 2D photonic quasicrystal samples exhibit multi-wavelength lasing emission in different directions due to long-range rotational symmetry. The five DFB lasing spots are symmetrically distributed in the 2D space, the center of the lasing spots is similar to a star shape. The derived analytical model predictions are in line with the experimental results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.