Temporal and spatial environmental factors have a substantial influence on crop yields, and an accurate prediction can benefit timely decision-making in global food production. Thus for better agricultural management, the precise estimation of the croplands is helpful. Mapping the cropland dynamics with regular requirement of crops is an important prerequisite for monitoring crops, yield estimation, and crop inventories. Remote sensing and geographic information systems play a significant role in tracing and understanding environmental impacts of agriculture. The use of machine learning aids in developing a model that can give precise predictions based on the historical data. The main objective of our study is to use these machine learning algorithms to make accurate predictions about the best crop types using the spectral, temporal, and polarimetric features. A big dataset incorporating optical and polarimetric aperture radar experimental values is used to train the machine learning classifiers for predicting the right crop type in the study area. It has been observed that these features aid in accurate mapping of the cropland. Our study involves the performance comparison of the various machine learning algorithms, and it has been observed that a single-layer neural network offers prediction accuracy of ∼99.6 % for this big PoISAR dataset.
Congenital heart failure (CHF) due to congestion in the blood is a serious cardiac problem correlated with crippling symptoms and leading to a rising death rate, monumental health care spending, and reduced quality of life. Heart disease prevention is among the most crucial functions of any medical system, as many people are prone to heart attacks worldwide. Although several segmentation methods for great vessels and the heart have been proposed in the research, they are not successful when applied to the health records of congenital heart disease. In this proposed work, the thickness and fat accumulation of most arteries are measured and analyzed, and then the measurement is synthesized with the corresponding width of the blood vessels of arteries; this data is used for training purposes in the convolutional neural network with one-off cross-validation and regularization. Using the CNN model, a confusion matrix is created and different statistical parameters such as accuracy sensitivity, specificity, precision, and f-score are generated. The final average accuracy was 97%, precision was 98.13%, and F-score was 98.36%. The results indicate that the CNN-based strategy can distinguish healthy hearts from those with prior cardiovascular disease.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.