Laser Beam Welding (LBW) finds widespread use in industries like naval and automotive. To meet the demands of complex welding processes, higher power lasers have been developed. However, conventional refractive optics limit power utilization, affecting robustness. Multi-Plane Light Conversion (MPLC), a fully reflective technology, enables complex beam shaping with 16kW lasers. A MPLC-based laser head with an 800µm annular shape at 1µm wavelength has been developed. LBW of 304L stainless steel (6mm thick) at 7kW and HLAW of steel (16kW) with 23mm penetration depth are successfully demonstrated. MPLC's extended depth of field improves welding efficacy, showcasing its potential in advancing laser welding applications.
Laser Beam Welding (LBW) of complex materials, such as ferritic and austenitic steel, is challenging. An appropriate beam shape improves the process by stabilizing the keyhole.
A methodology for tailoring the beam shape has been developed. The appropriate shape for LBW of 1mm thick steel is an inner intense spot and a background top-hat shape.
A dynamic beam shaper based on Multi-Plane Light Conversion has been developed: the ratio between the shapes and the back shape dimensions can be adjusted. The optical performance and the impact on the quality of the process with a 8kW 1.07µm laser are described.
The development of LBW processes is driven by more complex laser-based welding processes made possible with the development of lasers of higher available power. Nevertheless, most laser-heads are based on refractive optics, limiting the capability to fully use this power. Multi-Plane Light Conversion (MPLC) is a fully reflective technology enabling complex beam shaping through a succession of phase plates. A MPLC-based laser head has been developed providing an annular shape. It presents a less than a 1mm focus shift. LBW as well as HLAW of steal up to 16kW is demonstrated with improved butt-joint configuration gap welds.
Incoherent beam combination consists of superposing several laser beams on a target. This technique is relatively simple to implement and uses "off-the-shelf" optical components, without active control of the phase or polarization of the input sources. With the Multi-plane Light Conversion (MPLC) technique, tailored and multi-reflective phase element, enabling to obtain an optimal beam quality in terms of divergence for a given number of input beams, we present non-coherent beam combiner of 4 Fibered high power input beams at 1µm with a total M² close to 2,5 and a combining efficiency around 92%.
The development of composite-based manufactured parts has been led, by the need of the aerospace industry to reduce the weight of aircrafts while maintaining a very good structural performance. The trend to use thermoplastic instead of thermoset resin enables even lighter parts, nevertheless it involves laser heating instead of IR lamp heating.
We describe the development of a laser beam-shaper based on Multi-Plane Line Conversion technology delivering a tailored top-hat beam profile on the composite fiber to optimize its consolidation and therefore final properties. We demonstrate the performance of the process and describe the optical performance of the beam shaper.
Multi-kilowatt Laser Beam Welding (LBW) processes must take up three challenges to keep improving its performance: handling high power, shaping the output beam and reducing focus shift. This will lead to a higher quality and speed as well as the capability to weld thicker parts.
We describe here a beam shaper compatible with industry standard equipment (collimation and focusing modules, arm robot and laser) handling up to 16kW average power delivering a mm-wide annular shape and reducing the focus shift. The LBW processes improvements on different materials are described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.