KEYWORDS: Scanners, Image segmentation, Data acquisition, Magnetic resonance imaging, Evolutionary algorithms, Medical imaging, Image processing algorithms and systems, Data modeling, Artificial intelligence, Medicine
Machine learning algorithms tend to perform better within the setting wherein they are trained, a phenomenon known as the domain effect. Deep learning-based medical image segmentation algorithms are often trained using data acquired from specific scanners; however, these algorithms are expected to accurately segment anatomy in images acquired from scanners different from the ones used to obtain training images for such algorithms. In this work, we present evidence of a scanner and magnet strength specific domain effect for a deep-U-Net trained to segment spinal canals on axial MR images. The trained network performs better on new data from the same scanner and worse on data from other scanners, demonstrating a scanner-specific domain effect. We then construct ensembles of the U-Nets, in which each U-Net in the ensemble differs from others only in initialization. Finally, we demonstrate that these UNet ensembles reduce the differential between in-domain and out-of-domain performance, thereby mitigating the domain effect associated with single U-Nets. Our study evidences the importance of developing software robust to scanner-specific domain effects to handle scanner bias in Deep Learning.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.