Two new solid state devices which produced an atmospheric air corona discharge for generating and depositing a layer of static charge for Xerographic imaging have been fabricated and characterized. One type had a parallel plate capacitive structure and the other had an interdigitated capacitive structure. It was determined that the interdigitated capacitive structure performed better than the parallel plate capacitive structure in terms of reduced power consumption, charging current stability and device reliability. Several metal electrode material alternatives were investigated and gold electrodes performed the best. The air corona’s light emission peaks were measured to be in the 350 nm to 400 nm range. Ozone gas by-product generation to ~ 13 ppm was detected for an active surface area of 5 cm^2. Charge deposition
on to an imaging drum surface with a significant charging current density of 1.6E-4 A/cm^2 has been successfully demonstrated.
A new type of piezoelectric air transducer has been developed for active noise control and other air acoustics applications. The transducer is based on the composite panel structure of a bimorph-based double amplifier, that is, two parallel bimorphs or bimorph arrays with a curved cover plate as an active face attached to the top of the bimorphs. The electro- mechanical and electro-acoustic properties of the double amplifier structure and the transducer are investigated in this paper. The displacement of the cover plate of the double amplifier structure can reach millimeter scale with a relatively low driving voltage, which is more than ten times larger than the tip displacement of bimorphs. The sound pressure level (SPL) of the transducer can be larger than 90 dB (near field) in the frequency range from 50 to 1000 Hz and be larger than 80 dB (far field) from 200 Hz to 1000 Hz, with the largest value more than 130 dB (near field). Because of its light weight and panel structure, it has the potential to be used in active noise control.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.