High temperature detection of micro structure area with high sensitivity has aroused more and more interest recently. A high temperature sensor based on ultra-abrupt tapered fiber Mach-Zehnder interferometer (MZI) is proposed and fabricated by using a fusion-splicing method.The two normal cleaved ends are separated by a distance and become ellipsoidal by one time discharge using a fiber fusion splicer. Then the two ellipsoidal fiber heads contacted between the splicer electrodes are fused together to form the taper. And the other is formed through the same process separated by a distance of L. The thermal characteristic is investigated in 25–1100 °C, which temperature limit is highest of tapered fiber MZIs. It is observed that sensitivity varies with temperature ranges, which are 25 pm/°C in low-temperature range(25-300°C) and 105 pm/°C in high-temperature range(300-1100°C) respectively. The sensor demonstrates good thermal stability after annealing at 400 °C and 800 °C for 8 h respectively. The simple ultra-taper based MZI sensor has potential application prospect in the field of high temperature detection, such as the temperature of aeroengine.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.