This work aims to develop polymer-based optical micro-resonator sensors, operating in the visible range and sensitive for homogeneous in-situ detection of pollutants in aqueous medium. This paper demonstrates that using a porous silica cladding (ns = 1.2) enhances significantly the interaction of the evanescent field with the analytes by modifying the propagation properties of the guided optical mode. The results improve sensitivity without complicating the design and avoiding surface chemical functionalization classically used for such application. Detection experiments based on real part refractive index change in the visible range have been conducted using different glucose concentrations. A sensitivity at the state-of-the-art of 255 ± 12 nm/RIU has been achieved at 760 nm for micro-resonator polymer waveguides on porous silica. These promising results enable the use of our devices in sensors to detect both real and imaginary parts of the analyzed medium refractive index, as well as analysis of complex environments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.