This paper presents an experimentally verified static three-dimensional model for core free tubular dielectric elastomer actuators with anisotropic compliant metal electrodes. Due to the anisotropy of the electrodes, the performance (force versus voltage, force versus stroke, and stroke versus voltage) of the actuators depends strongly on their geometry. Based on the three-dimensional model, the performance of the actuators is optimized by means of the length of the axes of their inner elliptical cross section and their wall thickness.
The mechanical contacting of a dielectric elastomer actuator is investigated. The actuator is constructed by coiling the dielectric elastomer around two parallel metal rods, similar to a rubber band stretched by two index fingers. The goal of this paper is to design the geometry and the mechanical properties of a polymeric interlayer between the elastomer and the rods, gluing all materials together, so as to optimize the mechanical durability of the system. Finite element analysis is employed for the theoretical study which is linked up to experimental results performed by Danfoss PolyPower A/S.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.