We examine multiphoton-produced optical signals waveguided through single ZnO nanorod (NR) using a newly developed, scanning offset-emission hyperspectral microscopy (SOHM) technique. SOHM acquires spectrally indexed and spatially resolved intensity maps/spectra of waveguided light intensity, while excitation/emission collection positions and light polarization are scanned. Hence, the powerful measurement capabilities of SOHM enable quantitative analyses of the different ZnO NR waveguiding behaviors specific to the multiphoton-generated emissions as a function of measurement position, and the optical origin of the guided signal. We subsequently reveal the distinct waveguiding behaviors of single ZnO NRs pertaining to the variously originated signals and discuss particularly attractive ZnO NR properties in CARS waveguiding. In this talk, I will present the distinctive CARS waveguiding nature through single ZnO NR, exhibiting high position and polarization-dependence.
We will present unique applications of a label-free, hyperspectral scatter imaging technique in different microscopy platforms including conventional wide-field, dark-field, and confocal. In different platforms, we conducted label-free imaging of cells undergoing biological processes such as nanoparticle uptake, apoptosis, and metabolic flux change in response to the variation of the osmotic pressure. Hyperspectral image analyses resolved spectral endmembers corresponding to unique scattering and absorption characteristics as a result of such processes at the single particle, single organelle, and single cell level, delineating the details of nanomaterial-cell interactions in a 2D cell culture, cell apoptotic characteristics in a 3D culture, and volumetric changes of single cells under the variation of osmotic pressure. Our label-free scatter imaging has the potential for a broad range of biological and biomedical applications such as the development of scatter-based imaging contrast agents and the measurement of scatter parameters of subcellular organelles to identify the sub-micron scale origins of scattering signals in tissue scattering measurements.
A hyperspectral image projector (HIP) based on liquid crystal on silicon spatial light modulators is explained and demonstrated to generate data cubes. The HIP-constructed data cubes are three-dimensional images of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxyhemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standard data cubes, so-called digital phantoms, to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and interlaboratory comparisons for quantitative biomedical imaging applications.
We present a procedure to generate digital phantoms with a hyperspectral image projector (HIP) consisting of two liquid crystal on silicon (LCoS) spatial light modulators (SLMs). The digital phantoms are 3D image data cubes of the spatial distribution of spectrally resolved abundances of intracellular light-absorbing oxy-hemoglobin molecules in single erythrocytes. Spectrally and spatially resolved image data indistinguishable from the real scene may be used as standards to calibrate image sensors and validate image analysis algorithms for their measurement quality, performance consistency, and inter-laboratory comparisons for quantitative biomedical imaging applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.