PRIMA addresses questions about the origins and growth of planets, supermassive black holes, stars, and dust. Much of the radiant energy from these formation processes is obscured and only emerges in the far infrared (IR) where PRIMA observes (24–261 um). PRIMA’s PI science program (25% of its 5-year mission) focuses on three questions and feeds a rich archival Guest Investigator program: How do exoplanets form and what are the origins of their atmospheres? How do galaxies’ black holes and stellar masses co-evolve over cosmic time? How do interstellar dust and metals build up in galaxies over time? PRIMA provides access to atomic (C, N, O, Ne) and molecular lines (HD, H2O, OH), redshifted PAH emission bands, and far-IR dust emission. PRIMA’s 1.8-m, 4.5-K telescope serves two instruments using sensitive KIDs: the Far-InfraRed Enhanced Survey Spectrometer (continuous, high-resolution spectral coverage with over an order of magnitude improvement in spectral line sensitivity and 3-5 orders of magnitude improvement in spectral survey speed) and the PRIMA Imager (hyperspectral imaging, broadband polarimetry). PRIMA opens new discovery space with 75% of the time for General Observers.
Spectral distortions in the cosmic microwave background open a new window to the structure, content, and evolution of the universe. Detecting the expected signals at the few part-per-billion level requires background-limited sensitivity with careful control of instrumental signatures. PHOENIX is a Probe-class mission to map the CMB and diffuse astrophysical foregrounds at microwave through far-IR wavelengths. I describe the scientific goals and instrument design for the PHOENIX mission and use detailed time-ordered simulations to evaluate the projected instrument performance.
The Galaxy Evolution Probe (GEP) is a concept for a mid- and far-infrared space observatory to measure key properties of large samples of galaxies with large and unbiased surveys. GEP will attempt to achieve zodiacal light and Galactic dust emission photon background-limited observations by utilizing a 6-K, 2.0-m primary mirror and sensitive arrays of kinetic inductance detectors (KIDs). It will have two instrument modules: a 10 to 400 μm hyperspectral imager with spectral resolution R = λ / Δλ ≥ 8 (GEP-I) and a 24 to 193 μm, R = 200 grating spectrometer (GEP-S). GEP-I surveys will identify star-forming galaxies via their thermal dust emission and simultaneously measure redshifts using polycyclic aromatic hydrocarbon emission lines. Galaxy luminosities derived from star formation and nuclear supermassive black hole accretion will be measured for each source, enabling the cosmic star formation history to be measured to much greater precision than previously possible. Using optically thin far-infrared fine-structure lines, surveys with GEP-S will measure the growth of metallicity in the hearts of galaxies over cosmic time and extraplanar gas will be mapped in spiral galaxies in the local universe to investigate feedback processes. The science case and mission architecture designed to meet the science requirements is described, and the KID and readout electronics state of the art and needed developments are described. This paper supersedes the GEP concept study report cited in it by providing new content, including: a summary of recent mid-infrared KID development, a discussion of microlens array fabrication for mid-infrared KIDs, and additional context for galaxy surveys. The reader interested in more technical details may want to consult the concept study report.
The BLAST Observatory is a proposed super-pressure balloon-borne polarimeter designed for a future ultra- long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent super-pressure weight envelope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a 300 L 4He cryogenic receiver which will cool 8,274 microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an adiabatic demagnetization refrigerator (ADR) in combination with a 3He sorption refrigerator all backed by a liquid helium pumped pot operating at 2 K. The detector readout utilizes a new Xilinx RFSOC-based system which will run the next-generation of the BLAST-TNG KIDPy software. With this instrument we aim to answer outstanding questions about dust dynamics as well as provide community access to the polarized submillimeter sky made possible by high-altitude observing unrestricted by atmospheric transmission. The BLAST Observatory is designed for a minimum 31-day flight of which 70% will be dedicated to observations for BLAST scientific goals and the remaining 30% will be open to proposals from the wider astronomical community through a shared-risk proposals program.
The Galaxy Evolution Probe (GEP) is a concept for a mid and far-infrared space observatory designed to survey sky for star-forming galaxies from redshifts of z = 0 to beyond z = 4. Furthering our knowledge of galaxy formation requires uniform surveys of star-forming galaxies over a large range of redshifts and environments to accurately describe star formation, supermassive black hole growth, and interactions between these processes in galaxies. The GEP design includes a 2 m diameter SiC telescope actively cooled to 4 K and two instruments: (1) An imager to detect star-forming galaxies and measure their redshifts photometrically using emission features of polycyclic aromatic hydrocarbons. It will cover wavelengths from 10 to 400 μm, with 23 spectral resolution R = 8 filter-defined bands from 10 to 95 μm and five R = 3.5 bands from 95 to 400 μm. (2) A 24 – 193 μm, R = 200 dispersive spectrometer for redshift confirmation, identification of active galactic nuclei, and interstellar astrophysics using atomic fine-structure lines. The GEP will observe from a Sun-Earth L2 orbit, with a design lifetime of four years, devoted first to galaxy surveys with the imager and second to follow-up spectroscopy. The focal planes of the imager and the spectrometer will utilize KIDs, with the spectrometer comprised of four slit-coupled diffraction gratings feeding the KIDs. Cooling for the telescope, optics, and KID amplifiers will be provided by solar-powered cryocoolers, with a multi-stage adiabatic demagnetization refrigerator providing 100 mK cooling for the KIDs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.