Corning has focused its recent efforts on coefficient of thermal expansion (CTE) metrology improvements. Due to the unique environment required for EUVL technology, EUVL optics (and photomasks) require extremely uniform CTE properties, with targeted variations of less than 1ppb/K. Until now, no practical metrology technique existed that could accurately verify if a material met such requirements due to the lack of precision. Corning has previously introduced the idea of measuring CTE in ULE (registered trademark) Glass using Phase Measuring Interferometry (PMI) by discovering the correlation between refractive index and CTE in ULE (registered trademark) Glass. However, refinement of the correlation was necessary. This paper focuses on the progress made towards that end, which has resulted in the ability to non-destructively measure peak to valley CTE variations to within 57 parts per trillion per degree Kelvin (ppt/K) at possible spatial resolutions in the micron range on thick or thin samples.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.