Mapping the optical absorption and scattering properties of tissues using spatial frequency-domain imaging (SFDI) enhances quantitative fluorescence imaging of protoporphyrin IX (PpIX) in gliomas in the preclinical setting. The feasibility of using SFDI in the operating room was investigated here. A benchtop SFDI system was modified to mount directly to a commercial operating microscope. A digital light processing module imposed a selectable spatial light pattern from a broad-band xenon arc lamp to illuminate the surgical field. White light excitation and a liquid crystal-tunable filter allowed the diffuse reflectance images to be recorded at discrete wavelengths from 450 to 720 nm on a sCMOS camera. The performance was first tested in tissue-simulating phantoms, and data were then acquired intraoperatively during brain tumor resection surgery. The optical absorption and transport scattering coefficients could be estimated with average errors of 3.2% and 4.5% for the benchtop and clinical systems, respectively, with spatial resolution of better than 0.7 mm. These findings suggest that SFDI can be implemented in a clinically relevant configuration to achieve accurate mapping of the optical properties in the surgical field that can then be applied to achieve quantitative imaging of the fluorophore.
A pre-clinical (rnu/rnu rat) vertebral metastasis model of osteolytic (MT-1 breast cancer) was optimized and used to evaluate the effect of vertebral PDT. PDT alone and in combination with other standard local (radiation therapy, RT) and systemic (bisphosphonates, BP) therapies was evaluated through bioluminescence imaging, micro-CT based stereology, histology, and biomechanical testing. Single PDT treatment (photosensitizer BPD-MA, 690nm light) ablated tumor tissue in targeted vertebrae. PDT led to significant increases in bone structural properties, with greatest benefits observed from combined BP+PDT therapy: 76% and 19% increases in bone volume fraction in treated tumor-bearing and healthy untreated controls, respectively. Similar synergistic improvements (but of lesser magnitude) were found in combined PDT+RT treatments.
The safety and feasibility of MIS+PDT were evaluated in scale-up animal studies, refining surgical technique for clinical translation. Following appropriate institutional review board as well as Health Canada approval, 5 patients (light only control group) have undergone protocoled treatment to date. These patients have guided further refinement of human therapeutic application from a laser delivery and vertebral bone access perspective.
View contact details