The 2x2 optical switch is a crucial component to the future of optical communications and integrated optics. Optical switches on the silicon-on-insulator (SOI) platform have shown advantages in terms of device footprint and switching speed. However, due to the intrinsic properties of SOI rib waveguides, these devices suffer from a strong wavelength and polarization dependent response. Our work presents an SOI based Mach-Zehnder interferometer (MZI) switch which is both polarization and wavelength insensitive over a large bandwidth of
1260-1360 nm. We have completed detailed analyses on the polarization and wavelength performance of the
MZI, and obtained optimized parameters in a novel design to reduce the crosstalk f or transverse electric (TE) and transverse magnetic (TM) modes over the wavelength range 1260-1360 nm. Our simulations suggest that we successfully obtained a polarization and wavelength insensitive MZI. A crosstalk level below -18 dB is achieved for both the TE and TM modes in the on-state and the off-state, across the 100 nm bandwidth. Such a polarization and wavelength insensitive switch has a variety of applications in wavelength division multiplexing and other communication systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.